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Geometric Definition of Gauge Invariance* 

I. INTROJ)I~CTION 

This paper is akin to several which have appeared recently (1&S), in which 
the possible physical applicability of mathematical structures is discussed 
broadly, iu the absence however of particular snggestious relating to the 
current experimental situation. Easily available Lie group theorems (4-S) are 
stated as facts. lcurther work on conservation laws and structures based on global 
properties of Lie groups would, after detailed study of the one-dimensionai, 
rotation, and Lorentz groups, entail exhaustive studies of the simple Lie groups 
as presented in their classification (7, 8, 1). The exhaustive sjtudy of component 
structures may not easily yield to known mathematical tools, if the dificultics 
of Speiser and Tarski (3) are real. 

II. HISTORlCAI, INTlLOJ>I~CTION: GESERAI, ItELATIVlT~~, EI,ECTRO- 
MA(:KETIC THEORY, ANI) THF: YANCMILLS H-F’IELJ1 

The feeling that all the standards of reference or fiduciae used to describe the 
physical situation at a point in space-time are themselves determlued by the 
surroundings is the foundation of Einstein’s theory of general relativity. The 
set of possible fiduciae at a point being given, or physically determined, we set 
out to compare fiduciae at different points. If the concept of point is merely a 
device to sort out well-separated phenomena, then the tie connecting one point 
to an infinitesimally neighboring point should dominate : any statement made 
about all points at oncr should rest up011 integration, not directly upon axioms. 
Thus, Weyl saw the essence of general relativity iu the det,ermiuation of the 
displacement of the fiduciae of physics from one point to another along a curve, 
by the integration of an infinitesimal displacement. These fiduciac are restrict,ed 
to be special vector-space bases, and I also abide by this restriction. 

Einstein’s fiduciac were the trtrads of vectors orthonormal in t)hc Lorentz 
metric, physically defined by rulers or clocks, and light signals. I call these 
“inertial framps” (9, IO), and generalize by designating any family of special 
vrctor-space bases a family of fwmm. 
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Weyl tried to introduce new fiduciae. He first suggested that the standard or 
gauge of length be included among the pointwise fiduciae, and found a vector 
potential subject to gauge transformations (11). When complex fields were in- 
troduced into physics, Weyl felt the choice of a null phase to be a more reasonable 
pointwise fiducial choice, and again found a vector potential subject to gauge 
transformations (1.2). (In this paper he deals with a two-component spinor field 
so that the complex numbers should not seem arbitrary.) 

Classifications of particles have brought many more groups, describable as 
freedom of choice among pointwise fiduciae, into theoretical physics, and the 
scope of general relativity is consequently enlarged. This was recognized for 
choice of orthonormal triads in isotopic spin space, by Yang and Mills (13). 
The idea was finally presented in formal isolation by Utiyama (14), who discusses 
gravitation, electromagnetic theory, and the Yang-Mills theory as examples. 

The present paper covers much the same ground that was covered by Utiyama, 
but with the intent of emphasizing the similarity of the mathematical object in 
view with the objects of differential geometry. Properties which follow directly 
from the geometrical concepts are presented without Lagrangians. The problems 
of obtaining massed particles and of avoiding massless particles-major stumbling 
blocks to the applicability of Yang-Mills theories-and problems arising from 
quantization of Lagrangians, will scarcely he mentioned. Conservation laws 
emerging from global topology of the groups, may be new. 

III. SKETCHY DEFINITION OF CONNECTED BUNDLE. ISOTROPY. STRONG 
HOMOGENEITY. NORMALIZATION OF THE GROUP REPRESENTATION 

TO A STANDARD FORM 

At each point x of space-time, let there be a vector space, and among the 
bases of this vector space let there be a class of distinguished bases, the “frames.” 
The matrix transformations f’(n) = L’*’ (p,f@’ interchanging these frames will be 
required to constitute a group of matrices, L. The corresponding abstract Lie 
group will be “the group” or “the symmetry group.” That the points 5 are 
points of space-time will not usually be essential, so that I will speak of a mani- 
fold, rather than of space-time. 

There will he a rule for displacing vectors linearly along curves in the manifold, 
called variously a connection, a parallel displacement, or a displacement. The 
connection will be tied to the structure of frames, by requiring the displaced of a 
frame to be a frame. 

If any set of bases were designated “frames,” then since the matrices in 

P) = LJCa) &(@)and inf’“’ = L’(a)(pJ’(B) are inverse, and since L(a)(B) = S$,’ if 
f = f’, the set L of matrices for interchanging frames would possess the inverse 
matrices and the unit matrix, but might not be closed under matrix multiplica- 
tion. That L be a group is therefore equivalent to closure under matrix mul- 
tiplication. This is a condition of isotropy: Let I, and I,’ belong to L, so that 
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there exist frames f1 , f2 , f3 , f4 with fl = Lj’z and .fb = L’fd . If f4 is an 1, image, 
j’, = Lf5 , then ,f3 = L’Lfs , and L’I, is in L. But .fl is known to be an /, image. 
If .f4 is not, then that difference of f4 from fl is a violation of isotropy, defined 
as the iudependence of the set of matrices obtained by taking all frames to one 
from choice of the one frame. Equivalently, that the set L of matrices relat- 
ing pairs of frames be obtained in its entirety if the pairs he restricted by arbi- 
trarily fixing one of the frames. 

The following homogeneity condition is required: the groups of linear trans- 
formations defined at different points by the iuterchange of frames must be 
isomorphic groups of linear trausformations. The matrices /, for interchange of 
frames at, one point may then differ from the L’ at another point only by an 
over-all similarity transformation, L’ = SLAY’. 

That even this difference br uot allowed will he called “strong homogeneity.” 
Suppose that we question strong homogeneity, and allow the matrices L(A) 
which generate arbitrary frames from one frame at A to differ from those appro- 
priate to point B by a similarity transformation, L(B) = SL(A)SP’. Choose 
frame .fU at -4, and let the displaced of thrse along Al3 to B be called fAcn). The 
f ‘(n’ . 0 constitute a frame at L3, by our condition that the displaced of a frame be 
a frame. Every frame Jca’ at ,3 is of form ,f’“’ = l,( -4 )(a’(,&U0(8). The displace- 
ment is assumed to preserve linear combinations, whence the displaced J’(a) off’“’ 
is fca’ = J,(ll)(“‘(#+,f:l(~), is a frame at B, and therefore of form I,l(B)(m’cglfiiB), 
where /, ( .l ) = L1( R), and the set of all L( A ) coincides with that of all L(B) , 
and we may take S = I: Strong homogeneity follows from the> assumptions 
that the-paAle displacement acts linearly and that the displaced of a frame is 
a frame. 

Although now L(B) = L(A), we might have L(B) = L(A) = SLK’ in terms 
of an abstract equivalent represcutation I, not associated with any point. 
But if ,fo = Sgo and f = Sg, then g = Lg” , so that a redefinition of the frames 
normalizes the representation to form L. The condition that J-frames be preserved 
under parallel displacement is equivalent to the similar condition on the g- 
frames, and any definition of the j-frames determines the g-frames through 
,f = Sg, and vice versa. 

The structure of identical vector spaces attached to the points of a manifold, 
together with a symmetry group, is known as a vector bundle. An algebraic 
term for a vector space with a restrict,ed symmetry group of linear transforma- 
tions acting on it is a “representation”; the mathematical object in question 
is therefore more precisely named, “a connected bundle of representations.” 

IV. I’H~XICAI, MUTIVATION FOR THE I)EFINITIONS. SEAR ANI) FAR 

The mathematical situation presented here, concerning vector fields with 
components U(,)(X), might be compatible with quantum mechanics; field opera- 
tors usually hear indices to signify simple vector-space properties. However, the 
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separation between the vector spaces at different points s would seem to run 
counter to the spirit of quantum mechanics, where effects at different points are 
bound by interference within a degree of freedom. The structure of a connected 
vector bundle may need basic modification to meet the needs of quantum 
mechanics, and may appear unmodified only in classical limits. 

The role of spatial coordinates may even be an approximate feature-an 
introduction of a subdivision of some structure into more or less separated sub- 
structures, with the coordinates an approximate concept expressing degree of 
separation of such substructures. This primitive meaning of coordinates in locat- 
ing different “objects,” and its violation by the large extension of the objects of 
quantum mechanics on the spatial coordinates, both make me uneasy about 
accepting them as basic parameters. Of course, nearly everyone feels compelled 
to be unhappy with the x”. 

If one ignores such uneasiness, one may write classical field theories based 
on the 2’ by writing Lagrangian densities, and one may then use “conventional 
quantization procedures,” as is well known. 

But if the X’ do signify merely gross separation, going from one point to the 
next is complex, and anything connected with an extended path has an even 
more derivative status; the idea of relating vectors at different points without a 
connection is then repugnant. One would not necessarily shun &based Lag- 
grangian densities, but the implicit approximation should necessitate connections 
for adequate support. 

I mention two other possible definitions of connected bundle, and indicate 
why I have not used them. 

First, consider the proposal that the image under parallel displacement of the 
frames at a point be a family of bases at the new point such that the interchanges 
of bases within the new family of bases constitute an equivalent representation 
to that given originally, but that this new family of bases he not required to 
coincide with the frames at the new point. This is equivalent to dropping the 
restriction on the parallel displacement that the displaced of a frame be a frame; 
the connection no longer serves the function of transporting the physical fiduciae 
represented by the frames. In other words, starting from any preconception of 
the frames, we seek the most general displaced of these, and form the union, 
and use that for the frames, thereby reestablishing the former definition. 

Second, consider the proposition that if a certain unique rule is used for in- 
finitesimal displacements from a point, it is not guaranteed that after a loop 
displacement to the original point, the same rule for further infinitesimal displace- 
ments is to be obeyed. Then regard the point at the end of the loop different from 
that at the beginning. This analogue of Riemann surface is so simple here, be- 
cause here there is no process of continuation which generates itself from a 
local element. Rejection of multivaluedness may also be founded on the specula- 
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tion affirming the derivative status of the space-time point, for then the points 
are physically bonded by the connection, and the bonds may not be altered 
when we in thought follow along a series of other bonds which loops back. 

V. AXIOMATIC I)EFT?;TTION OF CONNECTEH HIrNI)T,E 

A conrlection requires a vector bundle for its support; a vector bundle is de- 
fined over a manifold. “Manifold” and “bundle” are already implicit in the 
notions “coordinate” and “component.” For formal sharpening of these concepts, 
see ref. 15; the following remarks may suffice. 

A manifold is a space which may be expressed as a union of open patches L’, , 
where the points of the ith patch may be labeled by coordinates (s’, . . , .r*‘, i) . 
The open sets and as much differential structure as is desired are to be given 
faithfully by the coordinates. 

The transformations .fpj,(~l, . . , .Y, i) = (x”, . , ZC’~, j) for relating dif- 
ferent coordinates must satisfy certain obvious requirements so that the open 
sets and differential structure defined by different coordinatizations agree, and so 
that the overlapping patches are seamed together properly: The mapping de- 
fined by ,fji from U, into r:j will be said to seam I’j onto U, . The manifold is 
completely given in coordinates only when besides the CIL , the seaming functions 
f,i are also given. 

I;or any i andj, it is required that there exist indices 1, . . , /‘such that seam- 
ing functions ,f%l , fi2 , . . . , fT--l,T , frj are given; the manifold is to be connected 
in the topological sense-I distinguish this once from the use of “connected” 
in connection with afline connection. For the seams to be symmetric, it is re- 
quired that for each fji there be an flj with .fiJjL = 1 011 the domain of fji . The 
seams are smoothed out by requiring that fkjfjf;k = 1 where defined. This is 
seen to be the familiar “group property” condition of transitivity .F( x) = 
F(E( x) ), or fjl.fic = ,fjk where defined, if one multiplies on the left by f,h . 

An equivalence of two coordinatizations is a complete set’ of admissible map- 
pings .I’, j and j’,j bet,ween the patches I’, and C’j of the two coordinatizations 
where each ( .rl,. . . , ?, i) is imaged in the other coordinatization, and vice versa, 
and the ensemble of both patchworks, their seaming functions supplemented with 
the new Jj; and J’ij functions, form a coordinatization. 

Each point in a coordinatization is recluired to possess a neighborhood which 
lies entirely within one patch, the coordinates having been required to give the 
topology fuithfuldy. If the open sets defined in patches Ui were thrown together 
by union without this condition, then interesting examples of bifurcating and, 
let us face it, multifurcating structures would be included; e.g., two one-dimen- 
sioIlalpatches(x,l)and(r,2),O<.r< l,with,flZ(.r,l) = (.r,2)forO<.r< 1’. 
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The exclusion of the branching structures is a condition of homogeneity, inas- 
much as the sites of branching are obviously special points, possible pathological 
objects which branch symmetrically everywhere excluded! 

B. REPRESESTATION BUNDLE. FRAMES 

At each point x of a manifold there is given an n-dimensional vector space, 
V(z). There is an open covering by patches U, , not necessarily the patches used 
to define the manifold itself, with the vectors given at point J: in the ith patch 
by symbols (vcn , . . . , v(,) , .r, i). The set of all these as x ranges over the ith 
patch and the uCu) range freely is the vectored patch Vi . The open sets and as 
much differential structure as desired are specified by these numbers. For these 
concepts to be invariant, the transformation functions will have to be continuous 
and differentiable a sufficient number of times. 

An admissible transformation of free vectors is obtained through an n by n 
matrix Lc,, (‘I belonging to L, a fixed Lie group of n by n matrices; u’c,) = 

L(m) 
( 8) 

V(P). 
An admissible transformation Lc,)“’ (x) of the set of vectors in all the V(s) 

as .r ranges over some set is continuous from the point it: into L, and differentiable 
as may times as desired for the purpose of defining the concept of derivative 
invariantly to a sufficient order. The jth vectored patch Vi is said to be seamed 
onto the ith vectored patch by an admissible transformation Lc,,“‘j;(z) defined 
for x in Ui fl Uj , if Lc,,“’ ii(z), abbreviated Lji(z) , maps from Vi into Vi thus: 
v’(,) = Lc,,‘B’ji(x)vc~) , with (zJ(~, , . . . , UC%) , .r, i) taken to (2~‘~~) , . . . , v’c,) , 2, j). 
The component bundle is given by the patchwork of U,‘s together with a given 
seaming function Lji(x) on each (nonempty) IJi fl lij . The seams are made 
symmetric by requiring Lij(z) to be inverse to Lji(z), for II: in Ui 0 Ilj . The 
seams are made smooth or transitive by requiring that Lkj(z)Lji(r) Lik(x) = 1, 
for x in Ui fl Uj fl Uk . This may be restated as a group property, and the cor- 
responding statement for longer chains of Lji’s follows. 

The above is a component representation bundle. 
A strict equivalence of component bundles on the same manifold is given by 

Lji and Lij seaming the two different patchworks together, SO that these and the 
seaming functions given for the separate bundles together satisfy the conditions 
for seaming functions. 

The structure of distinguished bases or frames is already present. If we write 
the vector V(X) given in a patch by (v(r) , . . , v(,) , x, i) as UC,) (x, i)S’“‘(x, i), 
where (f@(r, i))(o) = S&), the basis fCa)(x, i) at x associated with the ith 
patch is made explicit. By f’*’ ( ., x i is meant the invariant vectors which assume ) 
components Si,q’ in the ith patch; for J: in [ii fl CTj, V(X) = a(,)(~, i)f’“‘(x, i) = 
~~dC~zl,,dfo’Cx,j~ , with ~~,)(x,j) = Lc,,“’ ji(x)vca,(x,i),andf’“‘(2,j) = L (4 

@)ii(X) ’ 
f”’ (z, i), where L’“‘cp,Lc,~‘B’ = ~?:,a,‘. Also ,f’(al = L’“‘(&‘); on the f bases, 



GEOMETRIC DEFINITION OF GAUGE INVrlRIANCE 239 

(pa’) (8) = L@)(p) : The general frame is the ordered set of the columns of an 
L’“’ co,-matrix. 

The frames are therefore a general way of speaking of a group representation 
by matrices. This is a triviality, as it is obvious that when one starts with com- 
ponents one is speaking also of bases, and that one camlot avoid speaking of 
components if one wishes to apply a matrix, but it is yet worth remarking, 
inasmuch as the original language suggested by inertial frames and the derived 
Lorentz transformations in which one starts with the frames may at first thought 
seem less general than it is. 

C. ADMISSIBLE CONKECTION 

The connection is to respect the differential structure of the bundle, which has 
been created for its support, and of the Lie group L. Thus, given a smooth curve 
s(X), the I,(,I’B’(X) matrix for transporting vectors from X(O) to X(X) is to be 
continuous and differentiable in X; 

L(a,yX) = 6:;; + d$ (0) + o(X) 

in the limit X + 0, and 

dL(,,‘“’ 
7 (0) = 

dx“(X) 
c(2).“(d0) 1 7 , 

and since we wish bonds between points, not curves, to be basic, the q,)@),(.r) 
are to be functions of x independent of the curves s(X) to which they are applied. 

Curvature will entail derivatives of the c~,)(‘)~(z); currents, derivatives of 
the curvature; and we shall take derivatives of the currents, so we shall need 
fourfold differentiability of the infinitesimal components of connection, c(,)(‘)~( x). 
For this to have invariant meaning, the functions J@ji(~‘, . . , xrn, i) and 
L (‘)ji(X, i) in th 
di%rentiable. 

e d fi e nitions of manifold and bundle must be at least fourfold 

The c~,)(‘),,(x), which give the infinitesimal displacements, are sufficient to 
define the finite displacements along smooth curves contained in a single vectored 
pat,ch, because if such a path is divided into n segments each with coordinate 
differences less than some mesh 6 - l/n, then the displacements are given 
individually with error o(6), and hence the matrix product of the Sl?, + 
~~,,“‘~(z)A.r” taken in the proper order will differ from the finite displacement 
by an error -no(S), or ?ro(l/n) -+ 0 as n + 0~. 

A vector is transported across a patch seam by stopping at any point in the 
seam, and switching over to the same invariant vector at that point in the new 
patch. 

Since ~,~)(~)~(.r) f&r’ = cc,)(‘) (2) is to he an invariant matrix form, 
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C!m) (8) 0 J.l. ) . . . ) J 'm, j) = $ c~,,(~'~(.~~, . . . ) .?, i). (1) 

If displacement along a curve C from .r to .r’, lying entirely within each of 
several patches Ui , induces the transformation ZJ(,) (zr’, i) = Lcai(‘),(r’, .r)v~~) (z, i), 
when expressed in the ith patch, then 

I ‘(a) (q-c’, a) = L(,,(y)ij(x’)L(7)(6)j(.~‘, x)L(6)(p)ji(5). (2) 

C(e)(B)p(X, i) = L(a)(Y'ij(a)C(,)'*',(2,j)L(*)(B)ji(~~) 

or 

c(,)(p) (x, i) = L(,)(Y) ij(X)C(r)(*'(x:,j)L(*)(B'ji(~) + dL(a)(*)ij(X)L(6,(B)jZ(z), 

or 

C’(,)@)J2) = L~u)(y)(.T)L(B)(6)(x)c~,)(*),(2) + L’y&) axe . 

The first term alone would make the connection a tensor; the second is the usual 
term proportional to the gradient of the transformation, and not involving the 
original components of connection. Note that the term L’8’t~l ~3L~,,‘~‘/dx” may 
replaced by -~L(B’~~~,/&c”L~a~(*) or by half the sum of these. 

Conversely, if the transformation law relating quantities in different vectored 
patches labeled by i is given for the c~~,(“~(x:, i) dx” then the matrices 
c(~,‘~)&, i)A .r ’ f or corresponding intervals along a curve C from x to z’ must 
agree to first order in the linear transformations defined on invariant vectors, 
whence the properly ordered matrix product must converge to Li(x’, 2)‘s related 
by the finite transformation law (2) for a curve C in I;, fl lij . 

Since 

L (a) @)(A) = sg + XC(,) ‘8’pMm dg (0) + O(X) 

for a curve X(X), each c~,)(‘)~(z) for fixed z and p is a matrix in the infinitesimal 
algebra of L. If a basis of matrices E,c,,(‘) is chosen in this Lie algebra, we may 
write 

C(dykJ4 = CrJxwI(2’, (4) 

which separates the free parameters c’@(z) from the restriction on c~,)(“,,(x) 
that it belong to the given Lie algebra of matrices. The c’,(x) for fixed I and 
.r are of course components of a covariant tangent vector; in invariant notation, 
q,,‘@‘(z) = C’(.r)EI(,)(? 



The extraction of an h’r basis from the law of transformation between vectored 
patches is complicated, but if Lc,,“‘,j(.r) = Sisk, , then dL~,,‘“‘ij(.r.)ld.L” = 
X'zjp(dEl(al("j and c’,,(L, i) = c’,,(s, j) + x’~+(.z:). 

D. DISPLACEMENT ALONG a C~IWE 

Suppose the cc,)(‘) ,+(z, i) are given, where i designates a fine patch-the inter- 
section of a manifold patch, and a bundle patch-subject to the laws (l), (3) 
in fine-patch overlaps, for enough fine patches to cover the manifold. Is the toll- 
ncction itself-the law for displacing vectors along smooth curves-thereby 
determined? It is: 

The curve c’ runs from x to L’, the vector P at z is displaced along C into the 
vector u’ at -L.‘, if we already have the invariant connection. What we actually 
have is that by computing ordered-product line integrals of infinitesimal com- 
ponents of connection within fine patches, and changing notation for the point 
or vector at a fiuite set of seam points, the object (.rl, . . , F, ucl) , . . . , u(,) , i) 
is taken to the object (.r’l, , .rlm, u’~~, , . . . , u’(,) , j), where the ith fine 
patch lies over the initial invariant point L, the jth over x’. There is a parallel 
statement for a second fine patchwork that is appropriately related to the first 
by seaming functions, in such a way that we may unite both pat&works to form 
a single patchwork. 

Roth laws for displacement are therefore alternative ways to obtain the 
displacement for the case of the redundant patchwork. Thus, the theorem rests 
directly on the question of whether the mixed procedure of computing integrals 
within fine patches and changing notation at selected seam points in a single 
patchwork is independent of choice of patches and seam points-except for the 
obvious change of notation for the initial and final vectors due to changing frames 
at the start and finish. 

We wish to show that the matrix for displacement in the first manner is equal 
to that for rephrasing, displacement in the second manner, and then reverse 
rephrasiug. The content of Eq. (2) is that this is true if both manners do not 
involve internal seam points, the path there being completely contained in a 
single fine patch in both manners. 

Alore generally, there are some seam points in both manners. Let those points 
which are seam points in one manner but not in the other constitute trivial 
seam points ill t,he other, so that there is only one set of seam points .cl , . . . , .cs . 
The curve C from s to x’ is a succession of segment curves, Co from x to .cl , 
Cl from .rl to s? , . , C,Y from .rr to x’. For the rth segment, it is known from 
Eq. (2) that the matrix D,(r) yielding displacement in the first manner equals 
R1z.,(.r,+l )Dz( r)&,.(.r, ), where Z?21,r(~7) is the matrix for rephrasing from the 
first to the second manner at s7. in the patch known to wholly contain C, . The ell- 
t.irr displacement iu the first manner is D, = Dl(s)Rl(x,7) . Dl( l)R1(.rl)Dl(0), 
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where Rl(x,) is the patch-to-patch rephrasing of the first manner at the rth 
seaming point. Therefore, D1 = R,,,,(x')O,(s)R,,,,(z,) . . . R12,1(x2)D2(1). 
R,,,,(x,)R,(z,)R,(z,)R~~,~(~~)D~(O)R,,). If R2l,r(l~1.)R1(~T)R12.r-1(2,) = Rz 
(x,), then D1 = Rds’)Dds) . . . D~(l)R4zdD~(O)R~dx), whence D1 = RW 
(x’) ~D&zI,o(z) ; q.e.d. 

The essential point is the equation, R21,r(2,)R1(~T)R12,7-1(2,) = Rz(z,). If 
.rr is a trivial seaming point for the second manner, Rz(z,.) = 1, and the equation 
is the three-patch seaming axiom. If Rl(z,.) = 1, the same axiom applies if one 
uses, e.g., Rz~,~(x,) = (Rlz,r(z,))-', the two-patch seaming axiom. If zT is a true 
seaming point for both manners, the equation is the true four-patch analogue of 
the two- and three-patch seaming axioms. Finally, if the seam is a manifold, not a 
bundle, seam, the matrices are all 1; the manifold patches are only to make up 
for the expression of the matrix-product integral displacement in terms of 
literal coordinate differences. 

VI. ALGEBRA 

Constructions used in matrix representation theory extend quite simply to 
the theory of representation bundles. I mean such things as field-automorphic 
image of the matrices, homomorphism, direct sum, tensor product, and direct 
product. 

On the level of matrix representations, we have matrix group(s) Li (there 
may be only one), and a rule for building a matrix L out of a list: Li in Li , so 
that the matrices L constitute a group L, and such that this mapping from the 
list of Li onto L preserves Lie group properties. On the level of representation 
bundles, we consider a single manifold, with representation space(s) Vi(x) at 
each point x, with Li acting on Vi(z) , and each with a connection G(X) , and 
similarly for L, V(z), c(z). How may the L; --f L construction be related to the 
seaming of patches and to a possible G(Z) -+ C(Z) construction? 

There are really two questions. First, given Li and G(Z) so that we already have 
a connected bundle for each i over a common manifold, how do we extend an 
Li --+ L construction to build a connected L-bundle over the manifold? Second, 
given a comiected L-bundle such that L may be regarded as the image of an 
Li -+ L construction, can one produce Li-bundles over the manifold of the 
L-bundle and ci(z)‘s so that the L-bundle and connection reappear as the answer 
to the first question? 

A generally affirmative answer to the first question is easily obtained, as fol- 
lows. The matrix L,'"' (B! is equivalent to an i-frame, the ordered list of its columns. 
The construction, (Li) -+ L, is therefore already a construction which assigns 
to a family of frames, one for each i, a resultant L-frame. At the same time, the 
Li matrices used in seaming patches map to an L matrix. The axioms which 
declare that chains of Li seaming matrices at x beginning and ending in the same 
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coordinate patch are the identity at x are inherited by the L matrices owing to 
the group-homomorphic character postulated for the (Li) + L construction. 
Finally, the connection, given as a law for assigning a matrix Li for each i to a 
smooth path, is obviously extended by assigning that matrix L to the path which 
is the algebraic construct of the L, ; the displacement is defined so that parallel 
displacement and the algebraic construction are commutative. 

The answer to the second question is generally negative, except for the general 
class of constructions (Li) --) L which are uniqu:~ly invertible. In the latter case, 
each L + Li, will give an Li-bundle in the manner of the first question. Even if 
iLi) + L is a local isomorphism, however, L-bundles may be found which caunot 
be built algebraically from Lj-bundles. 

Examples 

1. Automorphism of Numbers. Here there is only one “Li”, which we therefore 
call “L.” The original matrices Lc,,(‘) and L’*’ (6) have their matrix elements 
replaced by nontrivially automorphic images, L(i) (8) and L(i) (a). For the reals, 
this is impossible; for the complexes, there is complex conjugation, LC;,‘i) = 
(Lc,~“‘)*. AIat.rix elements do not necessarily belong to an order-complete field, 
so that it is conceivable that this option of automorphism be more interesting 
thau complex conjugation, without going to characteristic p. An infinitesimal 
element c’J!S~(~,(~) is taken to ciEi(&,(i), where ci is the automorphic image of 
cr. The one-one character of this operation makes the answer to the second ques- 
tiou affirmative. The mapping of matrices may be regarded as a consequence of 
automorphic mapping UC,) + ZJ(&, of vector components, and the requirement 
that the mappings of matrices and vect.ors be commutative. 

2. Homomorphism. Again, only one “Li .” There is a homomorphism L~,,(” + 
ilI,H; P(fl, --+ nr" B of the matrices, which as in the general remarks may be 
considered a mapping of L-frames onto M-frames, and the seaming functions 
and connection matrices are directly imaged. But a single L-vector at .C might 
have no specific M-vector image. This cannot be smoothed over by construc- 
tion: consider the two-one homomorphism of the spin 5; representation of 
rotations auto the spin 1 representation. 

3. Admissible Vector Homomorphism onto. This is the special case of L ---f M 
homomorphism which is borne by vectors. Let us use “ZL” for a typical vector 
associated with the L-bundle, “u” for the dl-bundle. Then we are given a linear 
mapping u ---f u such that if L -+ AI, theta Lu + AJu. If a u-basis is chosen which 
extends a basis of the kernel, and if the images of the vectors used to extend a 
kernel basis are used as a basis in the image space, the matrices L leave the 
kernel invariant and are therefore reduced (though not necessarily completely 
reduced), and the matrices M coincide with that diagonal bloc of the matrices 
L which acts 011 the (arbitrary) complement of the kernel. Such choice of basis 
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has been legitimated at t,he end of Section III. Explicitly: Us,, + ua by a linear 
map; VA = hA 

(4 u(,) . 
The action of L: (Lu)~,, = LC,,(‘)ucB) . 

of nr: (A/V), = M~%~. 

The condition of admissibility : 

whence 

Let primes designate components on the convenient bases: 
(8) &,, = SC,, ucg) ; v/a = TABvB . 

v1 = h’u’; Tu = h'Su; v = T-‘h’Su = hu, so that h = T-‘h’S. If we employ the 
notation TCBTAB = 6 2, we may write this hACu) = TABh’S(B)S~~J(~). The map h’g(S’ 
simply annihilates u’N+l, . . . , ~‘(~1 if N - n is the dimension of the kernel and if 
we list the kernel basis last for convenience, and the map preserves the other 
U’ components, so that hlgCB) = Sf’, except for illegally high values of B; hACa) = 
TB ,$s’S (El (01) = TB fj’ (O). AlsO M’AB@ = 6;:; L’c,, 
1, .t !, N diagonal Llo:k of L’. hlle call define hcal.4, 

(‘), or iVrAB = L’A’, i.e., the 
mapping the V space onto the 

chosen N-dimensional subspace of the U space, so as to be inverse to hACn’ there, 
30 that hs(U'hca)A A (u) = 6 ;, but hcB, h, = qp\ (a), a nonidentical projection when 
the kernel is not (O}. hca)A = SBc,,TBA; m(~j(oI) = SB~&JBCa). 

If we regard choice of basis in the image space as trivial, then we may put 
TAD = 6:. Then hACal = SACu’ and these are the coefficients used for projecting 
irreducible quantities out of more complex quantities; neglect of T is indeed in 
order when we consider defining the irreducible quantities. 

In both types of homomorphism, the L + A1 map defines an infinitesimal 
map E --$ E’, and cIEz --+ crE”. In the case of a homomorphism which is locally 
isomorphic, all the cr are effective, and not otherwise. 

4. Isomorphism. In the case of isomorphism L + M of the matrix groups, the 
first and second questions are obviously answered in the affirmative, as we have 
homomorphisms both ways, although it is not necessary that there be one-one 
correspondence of vectors: e.g., when the vector spaces are of unequal dimension. 

.5. (Global) Vector Isomorphism onto. The second question has been answered 
affirmatively in Section III, where the phrasing “normalization of the represen- 
tation to standard form” was used. The vectors here correspond, by means of a 
similarity transformation. 

6. Direct Sum. By a similarity transformation L + SLS-‘, the matrices can 
be standardized to diagonal bloc form. That this can be done for the matrices 
is the algebraic notion of direct sum; since the set L is independent of the point 
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L by strong homogeneity, one x-independent similarity transformation X does 
this at once for all points of the manifold. Then all seaming matrices and dis- 
placement matrices may be considered interchangeably, either as direct sum 
matrices, or else as ordered lists of matrices, one acting in each direct summand 
space; the first and second questions are answered affirmatively, as a special 
case of vector-borne isomorphism. In particular, even when there are several 
isomorphic direct summands, the restriction on the parallel displacement that its 
matrix always belong to the group L prevents mixture of direct summands. 
Isolation of a single direct factor is an example of vector-borne homomorphism. 

7. Direct Product. Direct sum of matrices is the obvious vehicle for direct 
product of the abstract groups of the matrices, in the sense that ordered sets of 
group elements are the objects, and these are multiplied coordinateGse. The 
situation is confused by the use of “direct product” for the tensor product of 
matrices; by direct product of matrices is meant the direct sum where the groups 
belonging to the separate summands are independent. It is only for this special 
case of direct sum that the association of the summands is trivial, for although 
the transformations in patching or displacement of the summa&space vectors 
occur within the separate spaces without mixing, the several vectors are trans- 
formed at once by a common group element, which may be taken to be the 
direct sum matrix I, itself. If the group is a direct product, however, this corre- 
lation of the transformations is empty. 

8. ?‘ensor Product. As for all the operations discussed here except for the 
,direct homomorphism of matrices, the operation of tensor product may be based 
on the vector spaces. The multilinear functions t( zll , . . v,) on a list of vector 
spaces V, , expressed on a basis through coefficients fCal “.. .h,, , thus: !([!I, . . , PI) 
_ p ‘....a,)vl(a,)...l),(,~, ) are the tensors. Invariance of the function value 
f(Ul, ‘.. ) v,) to choice of basis implies that the tensor coefficients suffer the 
transformation HI L,‘“” (0,) when the vector components transform via L,C,o’p”. 
If 13 = 1, we have the case of the dual of a vector space. The map (I,l,,,,(pl’, , 
I Jr(a,,(Bq + H! Lea,) (6,) already implies an assignation of a frame to a choice of 
I’ frames; in fact, the basis belonging to the tCal I’.’ jai-’ components is, say, a lexico- 
graphic ordering of those multilinear functions ,fCa,,...,O,) which are defined by 
.fta ,,“., &l”P, . , .L’““) = s::,‘, , . . Si86,)) in terms of the vector-space bases. A 
dualization is usually applied to define “tensor product” of vectors, so as to have 
tensor product of matrices reduce simply to product of the components, rather 
than that of those of the contragredient matrices. 

For the basic infinitesimal operators, we have 

with El,(oii)(~i, = --ErC cai) (“) . The c’ in ~‘I31 are preserved, as the tensor product is 



246 LUBKIN 

defined to be linear. The application of c”s in parallel displacement and in co- 
variant derivative will consequently follow the familiar rule of treating each 
index separately and then summing the separate terms thus obtained. 

It is conventional when speaking of the algebra of tensors to introduce possible 
powers of various determinants in the transformation law for the tensor com- 
ponents, and thus speak of various kinds of weighted tensors and pseudotensors. 
Since the determinant to some power is a one-dimensional representation, the 
discussion of weights is comprised in the general tensor-product discussion. 
Determinants are introduced, more explicitly, by taking the totally antisym- 
metric part (homomorphism) of the tensor product of an n-dimensional vector 
space with itself, ‘n times. Pseudocharacteristics associated with disconriection 
of the group into components are also examples of tensor products, wherein one 
matrix factor consists of a representation which is the identity on the identity 
component. 

If the given representation is equivalent by a similarity transformatiou to 
matrices L’a1’..‘,ar’(81,...,87) = ni LiColi)(oi) , then the vectors with components 
may be regarded as transformed in consequence of their definition as multilinear 
functions on Y vector spaces, and since we are speaking of vector-based iso- 
morphism, this representation of the t-vector space as a space of tensors does 
not conflict with the seaming functions or the displacement; both the first and 
second questions have affirmative answers with respect to representing the given 
t’s as tensors. Again, either one group may act in the separate factor spaces by 
various representations, or several groups may act independently, the second 
case being a special case of the first wherein the over-all group is a direct product. 
If the group acting on the vectors is imaged homomorphically, not isomorphically, 
to obtain the group acting on the tensors, then the second question may have 
no answer in the form of inverse image vector bundles, for a suitably chosen 
example of a tensor bundle. 

Therefore the algebraic operations involved in classifying semisimple groups 
in terms of simple groups, and those of building representations by reduction of 
tensor products of others, are applicable to a representation bundle whenever 
applicable to the algebraic matrix representation itself, except that certain bun- 
dles of algebraic constructs may exist without inverse image bundles of their 
algebraic ingredients, if the construction is many-one. 

VII. SPINORS AND VECTOR8 

Some interesting examples of the algebraic relationships between represen 
tation bundles are obtained by considering the relation between spinors ua over 
4-space, and ordinary tangent vectors u(,) , given with respect to frames. Everyone 
is familiar with the construction u(“’ = c~(~);~ uib, wherein the Pauli matrices 1, 

ua , CJ~ , qr map spin tensors to vectors. If the Y(‘) are allowed to be complex, the 
map is generally one-one; real u(‘) correspond to Hermitean uib. The construction 
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involves automorphism (complex conjugation), tensor product, and an iso- 
morphism given by the Pauli matrix coefficients. It may be varied by prefixing 
the spinor side of the equation by powers of the determinant of the ubb matrix 
or of its complex conjugate, whereby one defines variously “weighted” vectors 
(16’). 

The full linear group acting on 2-spinors has 8 real dimensions. The subgroup 
of determinant 1 has 6 real dimensions, and is the familiar spin-Lorentz group. 
The two other dimensions are a real scaling, and a phase factor. Therefore, 
whatever vectors form the image of an algebraic structure built on spinors, the 
matrix group which acts on the vectors must be a subgroup of the direct product 
of the Lorentz group and two real one-dimensional groups, in a neighborhood of 
the identity. The complex conjugation in u 6b’s vitiates the phase-factor degree of 
freedom, so that the (jib uiLb construction leads to a group of only seven real 
dimensions. By use of determinantal prefixes, this can be lowered t#o six 01 
raised to eight, or the seventh scale-factor dimension may be replaced by the 
phase-factor dimension. The extra dimensions beyond six correspond to ordinary 
gauge degrees of freedom, and when the representing matrices function as a 
connection, a separate electromagnetic potential is introduced for each such 
extra degree of freedom. The phase-factor degree of freedom has a different 
global character from the real-stretch degree of freedom, but this difference is 
effective only if we use it to build magnetic monopoles. 

In ref. 10, the relation between coefficients of connection knb(P) and c(“)(,,) for 
transporting spinors and vectors was discussed; the rest of this paragraph should 
dispel the mystery in such discussions. Vector frames were the inertial frames 
interrelated by the usual six-parameter Lorentz group, but spinors were handled 
freely, so that the full linear eight-real-parameter group was tacitly assumed for 
them. Since the two extra degrees of freedom available for the spinor connection 
are associated with an over-all numeric factor, they appeared as coefficients of 
the unit I’auli matrix. The construction of vectors destroyed the phase factor, 
so only the real-scaling degree of freedom appeared, beyond the six from t,he 
Lorentz group, as an extra degree of freedom for the vector connection deri\-ccl 
from the spinor connection. A true analogue of the restriction of the vector 
transformations to Lorentz transformations by choice of inertial-frame tetrads 
is the choice of inertial-frame spinor pairs (1~~ , 212) such that the matrices in- 
volved in a frame transformation ( u1 , ~2) + ( u’~ , ~‘2) have determinant 1. Then 
the infinitesimal components of comiection for spinors do not have the extra 
degrees of freedom. 

VIII. TASGENT SPACES 

Notation for tangent-space vectors is set out here. 
Covariant tangent vectors at .rp = xc: or at .r” = 2’61, w = I, . . . , ‘m, whose 

components transform according to P’~(x’“) = (~~“,/~zI~)(~=~“~v,(~O)) are COG 
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structible by defining the vectors to be the sets of functions f differentiable at 
the point z. with the functions in any one set possessing a common value V,(Q) = 
(af/&Y) (x0) for their respective derivatives, when these are computed in terms 
of one common set of coordinates, 2”. These vectors form an m-dimensional 
vector space, the tangent space of covariant vectors at ~0 . The bases implied 
by the component notation are the ordered set of e“(s), where e”(.r:o) is that 
set of functions differentiable at 20 which coincide with the pth coordinate func- 
tion .r’ to first order in the x”, at 20 . If the dual or reciprocal basis to the e“ be 
written (e,), then a contravariant tangent vector field U(.ZZ) may be expanded, 
u(r) = u”(.r)e,,(x), and more familiarly, u = dx, u’” = cZ.r”, dx = dx”e,. The 
application of a variable contravariant vector to a covariant vector yields a 
differential form u”v,, , or d~(x)($f/dx”)(x). If v, is actually a gradient, v,, = 
q/&r? in a neighborhood, then one function ‘y” may be used in a whole neighbor- 
hood. A coordinate transformation introduces new bases (e”) for the covariant 
tangent spaces, and therefore new dual bases (e’,+) for the contravariant tangent 
spaces. The transformation at any one point is given by an arbitrary nonsingular 
m by m matrix, barring arbitrary restrictions on the choice of curvilinear co- 
ordinates, but the over-all transformationPa nonsingular m by m matrix function 
of the coordinates-must satisfy integrability conditions. If the group for frame 
transformations is to be other than the full linear group in m-dimensional space, 
and even in that case, if we wish freedom from the integrability conditions, then 
the (e’, eP) bases are not to be regarded as the frames. 

In general, then, the frames .f(‘) will be other vector space bases, although 
p = 1, ..’ ) m. Thus, v = v,e” = ~~,,~f(‘); u = de, = u(“)f(,,) , where (fCr,) is the 
frame of contravariant vectors dual to (f”‘). In order to completely divorce the 
bookkeeping of curvilinear coordinate transformations from the language which 
describes the geometry, it is convenient to define each f”) to be the same co- 
variant vector when a transformation of coordinates induces a transformation 
ep --f e” of the coordinate-bound bases. Thus, if 

.p (xl, . . . ) x”) = f(8)y(x1, . . . , xm)e”(xl, . . , x”) 

and if (r’, . . . , x”) + (r’l, . . . , z”‘) are corresponding m-tuples in a transfor- 
mation of coordinates, so that also 

f’“‘(<$ . . ) x’m) = f’(F)“( x’l, . . ) .pye”( x/1, . . ) x’m), 

with 

then 

f’(p)y $Y$ = fcpJm , or f’(‘)” = f(p)m C!?$. 
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If the tangent spaces are introduced by the computation of derivatives, the 
coordinate-bound bases will enter first, aud this will be signalled by the use of 
unparenthesized indices. If a representation bundle built on the taugeut spaces 
is also to be discussed, then the coefficients f(a’V for mediating between the differ- 
entiations and the algebra will assume importance equal to that of the COW 
nection itself. 

A. DEFINITION 

The structure defined by vectored patches is presented in a highly implicit 
form: The connectiou mapping the space at .C onto the space at c’ # II: (the 
path a smooth curve which does uot cross or touch itself) is given by the identity 
matrix if basic frames are iutroduced along the curve by parallel displacement 
from the start; also all the infiuitesimal components of comlection may he 
annulled at any one point s, if basic frames about s are introduced by displacing 
a basic frame at J parallelly along a complete family of curves radiating from .r. 

If, however, a smooth curve loops back to its start, the parallel displacement 
of a frame around it may yield a new frame; the loop displacement of a general 
vector referred to a fixed frame defines an admissible linear transformation 
u’(a) = Rem, (0, 1~~~) at the base point (start and finish). If a different frame is choseu 
as basis at the base point, 8,,) = Lc,, “)zrcp, , then fi,,,(‘) = Z,‘Y’(a~R,y)‘*‘L~6)‘13’ : 
the R(,, “) transform under frame transformations as mixed-tensor compo- 
nents, and the matrix [Rc,, ‘@‘I is giveu only up to conjugation with an arbitrary 
L-matrix, unless a base frame is specified together with the base point; this is 
the case s = .r’ of the theorem of Section V, D. A change of base point 
introduces 110 further change ill the R-matrix than conjugation by an L-ma- 

P 

e 

P’ 
FIG. 1. Change of base point 
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trix. The rule assigning R,,,“‘-transformations to loops (with base point and 
base frame) will be called curvature, and the matrix [Rc,,@)], the curvature 
around the loop. 

The ambiguity of L-conjugations of the curvature matrices is not serious: 
Consider the class of all loops beginning and ending at one common base point 
bearing one base frame, (P, f), then change both, (P’, f’). The curvatures 
sustain merely one over-all L-conjugation, if the loop based at P’ corresponding 
to loop 1 at P is constructed by going from P’ to P along a fixed curve C, then 
describing I, then describing C backwards : C’ZC. (This is the usual argument for 
showing that the use of a base point in one-dimensional homotopy is not a 
difficulty.) There is no ambiguity at all, of course, when L is a commutative 
group, e.g., in the study of two-dimensional metric spaces, and in ordinary gauge 
invariance as met in electromagnetic theory. 

B. CHAHACTERIZATION OF CONNECTED BUNDLES BY CURVATURE 

If two equivalent L-bundles over the same manifold equipped with connections 
assign the same curvature matrices to all loops from some base point z. with 
base frame fU , may the equivalence be established so that the connections 
agree? 

A proof that this may be done will be sketched. Draw a family of curves 
radiating out from the base point x0, so that to each point x there is one curve 
C drawn from z. to 5. The two displacements along C from x0 to J: will in general 
introduce different frames, f1 and SZ, at z; by the frames fi and f~ , is meant the 
columns of the displacement matrices. By applying an appropriate transfor- 
mation L(C, x) to the basic frame at x in the patchwork for the second bundle, 
the columns of the second displacement matrix may be made to agree with those 
of the first, however, so that now fl -+ fz is given by the identity matrix. The 
fact that if another curve C’ is drawn from x0 to x, the displacement around the 
loop C’-‘C, C followed by the reverse of C’, is given by the same curvature 
matrix for both connections then has the consequence that the change of basic 
frame L(C, .r) at x: is in fact independent of the curve C. If one imagines the 
manifold cut so that, except for cuts, it is covered by one huge patch, the L( 6, x) 
construction is seen to do the job of establishing the desired equivalence with 
identity of connections, for the C’ paths may even be allowed to cross cuts; 
the C’-‘C argument covers this because the assumption of equal curvature 
matrices was made for all loops, even such as are not homotopic to points. 
One could also make L( C, x) constructions in patches, and then use the curvature 
assumption to prove that the seaming functions are all right. Note that if the 
L(C, x) transformation of the basis at x in the second structure is not made 
first, before C’ is compared to C, then the proof is snarled by the circumstance 
that z-based curvatures may differ from the one structure to the equivalent one 
by an L-conjugation. 
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This proof of eyuivalence based on equal curvature does not apply to tangent 
bundles, unless the role of the vectors as tangent vectors is ignored; there is the 
question of comparison of the transformations f’“’ r(~) expressing the frames 
relative to the coordinate-bound bases e’( .r). On the other hand, there is some 
freedom to modify these by coordinate transformations. 

<:. IXFISITESIMAL CUHV.~TURE 

In the case of an infinitesimal loop, the curvature matrix must differ from the 
unit matrix infinitesimally, and the infinitesimal difference will belong to the 
matrix Lie algebra of the matrix group L. Since any displacement, not necessarily 
infinitesimal, followed by its reverse, leads to a unit curvature matrix, it follows 
that the lowest order in which infinitesimal curvature may appear (and does) is 
the second order of coordinate-difference infinitesimals. This is just as in the 
case of Riemannian geometry (1’7, 18). It may be verified by direct computation 
that displacement of a vector around a parallelogram of displacements 6, E, -6, 
-t is S:!‘, + R(,, (8’pytsv, to this order, where 

Y = ?$(S”c” - #t@), 

and 

Since the curvature matrix for the loop is a coordinate invariant, and is even 
frame invariant so long as one keeps the frame at the base point fixed, RC,,(B),,Y 
necessarily transforms in the manner expected by the writing of its indices. Note 
that its definition does not involve the concept of absolute tangent-vector 
differential, i.e., of the tangent-space connection, r, unless of course the vectors 
u(,) and connection c~,)(~‘~ themselves refer to tangent vectors, as is the case in 
Riemannian geometry. 

D. h~mItr\I~~ I~)ESTITIES 

WC come now to identities satisfied by the Rc,,(‘),,, . There is the obvious 
antisymmetry, 

R d”,,v + R&“v,, = 0, 

and the condition that the matrix belong to the Lie algebra, 

R (a1 ‘B’&) = Rrp,(z)E&@), (6) 

for appropriate p, Y-antisymmetric coefficients R1bY(x). For particular Lie alge- 
bras, this could be given instead by conditions of symmetry on the indices (Y, p. 
If we put c d”p = cr,&,, (‘) into the definition of R (nJ(B),,V , then the Lie-algebra 
components of curvature and connection are seen to be related by 
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Rzpv = g - 
c (7) 

where the crJK are the constants of structure appropriate to the EICa)(“, namely, 

E J(a) ?EK(y)(b) - &(pE ,(,)@) = CzJREl(a)(e’. (8) 

We have seen that one set c’~(z) of Lie-albegra components of connection 
may be used to construct many concrete matrix realizations of a connected 
bundle of representations, and the RrpY(x) form for the curvature would be 
useful in at once defining the infinitesimal curvature for such a family of bundles. 

If the given infinitesimal curvature vanishes over a cap, then the constructed 
infinitesimal curvature (see I’) also vanishes, whence displacement around the loop 
bounding the cap is given by the identity matrix. For spaces with vanishing 
infinitesimal curvature, the displacement operator depends only on the homotopy 
class of the curve. Now choose a base point in each simply connected patch and 
introduce basic frames throughout the patch by parallel displacement along a 
complete system of radiating curves. This is independent of choice of the curves, 
and displacement from the base point x0 in a patch is given by the unit matrix. 
But then displacement in a patch from z to X’ is given by the unit matrix for 
displacement from .ro to x’ through x, and the displacement in general reduces 
to the product of seaming matrices. Therefore, the theory of connected L-bundles 
with null infinitesimal curvature reduces to that of L-bundles without a con- 
nection. 

E. BIANCHI IDENTITIES 

Bianchi identities hold, and may be expressed in various forms. The simplest 
form is obtained by introducing frames about J: so that the C:(X) = 0, whence 
the c’ JKcJpcKv term and its first derivatives all vanish at x, so that the verification 
of 

(9, 

reduces to the cancellation of only six terms. By using explicit differentiation for 
covariant differentiation for tangent vectors, the invariant form RzpY,a + 
cycl. (p, V, a) = 0 is obtained; 

g + RJ,, c= m  C’JR + cyd. (cc, V, a) = 0. 

It is not only not necessary to have a comrection for the tangent spaces to state 
Bianchi identities, but such a connection refuses to participate in them, even if 
it is given. 



I;. A I’EXXJI,I~R IKTEGRAL. THE C>AUSS-BOXNET THEOREM 

We have seen that the curvature mapping which assigns matrices to loops is a 
characterization of an L-bundle, but the class of sufficiently smooth loops is 
such an unwieldy object that this characterization is not likely to be useful, 
unIrss the ~~Irvat~~re can be specified more simply. One would hope that the 
finite could be reduced to the i~~~~~~itesimal, and that it should suffice to give the 
infinitesimal curvature R C(I)(B)pY(r), supplemented of course by matrices Rc,,“‘( P) 
for a set of loops P sufficient to generate the homotopy classes. I have tried to 
define an integral whereby the curvature around a loop homotopic to a point) 
may be expressed in terms of the infinitesimal curvature over a retraction cap, 
bounded by the loop, with indifferent success. 

Figure 2 shows the way in which the loop is subdivided, so that infinitesimal 
loops covering the retractiol~ cap come into consideration. UIlfortuilately, if 
frames are arbitrarily specified beforehand over the cap, and the il~fillitesimal 
curvature &,“j: is given relative to them, the process of parallel displacement 
along the curve of Fig. 2d or along any other scheme of subdivision, starting 

b 

C d 

FIG:. 2. Subdivision of a loop which hounds :t rap 



254 LUBKIN 

from the frame given as basis at the base point, will lead to a frame at an in- 
finitesimal loop other than the given one, whence the displacement about the 
infinitesimal loop will not be obtained through the given R~n)(B’,,y(s) function, 
but will be obtained through some L-matrix conjugate of it. It is futile to try 
to remedy this by altering the subdivision construction, for any integral which 
leads to the over-all curvature matrix R(,, (‘) 4 of the entire loop 4 must show its ( ) 
L-conjugation dependence on the choice of basic frame at the base point, so that 
some propagation of this frame over the entire retraction cap must be a necessary 
part of the definition of the integral. 

Imagine that we are given the connection over the cap, minimally, that we 
are given the radial components, q,) (‘),$ for radial 6’, of the connection over 
the cap. Displace the base frame parallel to the family of radii, to obtain the 
new frames over the cap. Explicitly, the connection from the base point to a 
point z along a radius will be 

C(a,‘“‘(X) 

so that the constructed frame f(x) at II: is related to the original, given frame 
f’(x) at z byf’*‘(x) = C,,,‘“‘(Z)~“~‘(X), or using our notation for the transposed 
inverse matrix, f”“‘(x) = C’“’ c~,(x)f”‘(x). Since the new frames f”‘(x) are to 
be used as bases, (f”‘(~)~~, = Slay’, , and (f’“‘(~))(~) = C(a)cr,(z); the radially 
integrated connection defines the given frames in terms of the constructed frames. 
Let the given curvature be R’c,,(B)p “(x) . Then on the new frames, the infinitesimal 
curvature R is given by R~aj(Y',,(x) = C~~~~a~(x)R'~rr~~B~pv(z)C~Y~~~~(x), and it 
is this constructed infinitesimal curvature which is to be used in the integral. 
Note that the given functions which have actually been needed so far are the 
c(,)‘~‘$ along a family of radial tangent vectors 6”, and the given R'~,~(")r,(x) over 
the cap; the notions of given and constructed frames are conceptual devices 
which entail no further given functions. 

The integral itself is the limit defined by the product of the curvature matrices 
around the infinitesimal loops in the ordering explained by the numbers in Fig. 

2d. 'hw, &a, “‘(8) is the fine-mesh limit of products of the form R16cal(U16). 
R 15Ca1.5) . . . Rlcal)(@), where Rica,"' = Sisk, + Rc,,'"',,(xi)t"", xi is any mean 
coordinate for the ith element of area, and t:” is i,d( 8’~” - #&‘), or simply 6’~“, 
for rectangular elements of area spanned by two coordinate-difference in- 
finitesimals. 

It is obvious that in parallel displacement around the curve of Fig. 2d, all 
displacements along the incursions cancel, and that therefore Rc,,"'(P) is ob- 
tained. The construction is needed so that the fact that the boundary of an in 
finitesimal element is described not at once, but in two separate segments, should 
not matter, and so that one knows which of the many L-conjugate curvatures 
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FIG. 3. Building a proper element of area 

about the element should be used. In fact, the construction renders all matrices 
for radial displacements unit matrices, so that only the displacements along 
circles count, and these are included in one continuous description of each in- 
finitesimal element if one adds extra ineffective radial displacements. The curva- 
ture matrix to be used when an infinitesimal loop is thus described in following 
the path of Fig. Sd is that reckoned relative to the frames introduced by parallel 
displacement along the radii; i.e., the R-matrices computed from the given 
RI-matrices and the integral connection matrices, as already explained. 

The unsatisfactory aspect of this integral is the fact that a great deal must be 
known about the components of connection themselves for its computation, 
so that the given infinitesimal curvature may be suitably corrected prior to the 
actual ordered-product integration of the infinitesimal curvature; and, as has 
already been remarked, it is difficult to see how else the L-conjugation, which 
the entire result, Rc,,“’ ( P), must suffer when the frame at the base point is 
changed, may enter. 

If we are interested in the curvature around all loops homotopic to a point with 
a commou base point and base frame, which are contained in one surface, or all 
loops which bound caps which are ruled by a common family of curves radiating 
from a common base point, one construction of new frames by displacement from 
the base point along the radial curves will suffice for the very large class of loops 
described, but the class of all loops is so much larger that the advantage gained 
is small. If the underlying manifold is two-dimensional, of course, the class of 
such loops is exhaustive. 

The difficulties disappear, of course, if the group L is commutative, for then 
L-conjugation is ineffective, R’ = R, the order of factors does not matter, and 
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the integral is the limit of 

IT (1 + RiPd”‘) 

or of 

thus 

[Rca,(‘)(l)l = exp /I [RcYj(8)l,,Y(~) $$$ d,u dv. 

This is the Gauss-Bonnet theorem. For example, if the group is the phase-factor 
group of electromagnetic theory, an L-matrix is a numeric factor eiP, an in- 
finitesimal element an imaginary number, Rp.(s) is of form i$$jPy(x), where 
fPV(x) is real, and 

R(f) = exP i a // .fpv(2) ‘%$$ du dv, or 
> 

exp i 1s j’UV(s) & &, 

the integral itself giving the phase angle. The fact that the integral is the same 
over different retraction caps for the same loop is Gauss’ theorem in electromag- 
netic theory applied to magnetic rather than to electric charges. The historical 
statement of the Gauss-Bonnet theorem is for two-dimensional metric spaces, 
where the frames are orthonormal pairs of tangent vectors, the group L is the 

commutative group of matrices 
cos 0 - sin 0 
sin 8 

cos 8 , the infinitesimal matrices are 1 
0 -1 

of the form f3 I o , [ 1 and the infinitesimal curvature is 
o-1 [ 1 1 o times Q”(2). 

We can simplify 

to 20UV(u, v) du dv by going to u, v coordinates. The finite curvature is 

so that the angle of rotation suffered by a vector on parallel displacement around 
a loop is given by 2 $lcap B,,(x) du dv; 28,, is the u, v-coordinate based Gaussian 
curvature density. (The notation for electromagnetic theory may be brought 
into this real form by emphasizing real and imaginary parts.) 

S. COVARIANT IlERIVATIVE 

If a vector field is defined and differentiable at 2, then its absolute differential 
is defined as the difference between the first-order increment of its components 
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and the first-order increment of its components obtained by parallel displacement 
from 2, 

d,l,,V(,, = dV(,, - dllv(d ) 

or 

d,,l,S V(e) = 
( 
2 - C(,)yl v(p) dx’, 

> 
and the coefhcients are the components of the “covariant derivative”; 

d%l) (8) VW., = dx” - C(a) !A V(l9) . (11) 

Since 

fiabsv(o) = V(,),,dX@ G (V(X + dx) - v,,(t, dX))(,, 

is the difference of two vectors at 11: + dx, to first order, it transforms as a vector 
at z + d.r, and since it has only first-order magnitude, it transforms as a vector 
at x, to linear order in the dx’. u(,), is therefore a second-rank tensor, an element 
of the vector space constructed by tensor product of the given vector space and 
the tangent space, and with the index P referring to a coordinate-dependent 
(8) basis in the tangent space, if the clx’” designate literal increments of the 
coordinates. 

In order to displace v(,),, or, equivalently, to extract a second covariant deriva- 
tive, it is necessary that a connection be given for the bundle of tangent spaces. 
Such a connection will be assumed when needed below, and will be distinguished 
by the notations(pfr,i’“l, , rYmp , etc., from the more general notion of infinitesimal 
components c(~) P of an arbitrary connection. (Thus, an index free of paren- 
theses is to be used with a coordinate-bound tangent-space basis; an index in 
round parentheses is to be used with a frame, and may or may not refer to a 
tangent space; an index in square parentheses is to be used with a frame basis 
for a tangent space.) 

XI. TORSION ANI) COKNECTEII TANGENT SPACER 

Iirfinitesimal curvature is often introduced in Riemannian geometry by permut- 
ing two successive covariant derivations, rather than by the parallel displace- 
ment of the vector space at a point around infinitesimal loops. By applying ( 11) 
to the VW,,, tensor, we find that 

V(a) ,p.v = 
%P 

- C(a), 
(6) G( 

dx” 
Y VL9),rn , 

where the connection c~,,~(‘)~~ for tensors is given by the one-irldex-at-a-tinIc 
rule, as discussed in the section on algebra, 
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%a 
(mm _ Y - C(a) (9; + 8~Bk)ly” . 

Ry substituting (11) itself and collecting the coefficients of u(~) and of ~(~1,. , 
one obtains 

V(cd,,,” - U(d,“,, = -R (,,ywv(~) - l;aJJ(,),G, ) (12) 

where RC,,(B’p” is as before, and in particular depends only on c, not on r-unless 
c depends on r-and where 

1 ,TJ &Iv= - r,“, + r”a, ) (13) 

is the “torsion.” There are many ways to see that all the quantities written in 
(12) are the components of tensors of the type expected in concordance with 
the notation of positioned indices. 

As is well known, and as is obvious through the circumstance that the I’,,‘” 
are coordinate-based components of a tangent-space tensor, the r,“” cannot in 
general be set zero at even a point, by a choice of coordinates, although we 
argued generally that, given a group of matrices L acting between distinguished 
bases or frames f”’ in the tangent spaces, the rIPI [‘I” or the I‘,, ‘mlC”~ could be put 
to zero at any one point, the construction establishing this situation being choice 
of frames in a neighborhood of the point by parallel displacement of the basic 
frame at the point along a complete system of radiating curves. 

It may be instructive to consider how these circumstances may coexist. The 
key point is that transformation of coordinate-bound bases e” = l~““e” induced by 
a coordinate transformation is L“” = ~z’~/&c”, and is therefore restricted by in- 
tegrability conditions; dI,“,/dx” is ~2~“‘/d~md~“, and is therefore necessarily 
(v, q-symmetric. The general law for transformation of components of connec- 
tion given for L-transformations by (3), and its derivation, are in fact valid for 
any change of basis. If the basis at the base point x is unchanged, then c’(,) (13) _ G - 
c(,,(y + dL(,,‘“‘jd.r’ = ( 8, 

CC,) P - dI,‘B’ ,,,/a~:", and r'"a,, = rYmr - d2~'m/dx'd~". 

Since we may put x” = xm + ~&s,+““~x” for arbitrary (EL, v)-symmetric s,,~” , 
we have the familiar fact that the symmetric part of rvmp may be annulled at a 
point, and then ryD,, = -!hTyf(,, . We therefore have a second geometric role for 
the torsion: its vanishing is the necessary and sufficient condition which allows 
the transformation of bases needed to annul the coefficients of comiection at a 
point to be effected via coordinate-bound bases. Alore graphically, if the torsion 
doesn’t vanish at a point, then parallel displacement of a frame along a complete 
system of radiating curves will result in a family of frames which carmot mesh 
smoothly into a coordinate system in the neighborhood of the point-this apply- 
ing for frames ill the tangent spaces of contravariant vectors, otherwise it makes 
no sense. 

Since the transformation f”“(x) = j”‘“(z)e”(z) or fIrl (x) = f~,l”(x)e”(x) on 

the one hand, with f,,,l”fCPla = S’, , and f,pl”f[D1” = st,D,‘, and the torsion TP,, 
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on the other, are both features peculiar to the tangent spaces, and since jrrl”(.e) 
clearly contains the entire relationship of the L-group geometry to the coordinates, 
the torsion must depend on the j’,pl”(~). Formulas for this arc as follows. 

Sillce j,)r~y(.r,l is a transformation of bases, (3) applies: 

r[a]Ip’p = f[u]vf~p’mr”mp + .fLp’,af,,,“ja& 

Uy a suitable coordinate transformation, it is possible to render j”lV = 6: , and 
thereby shorten the writing: 

If frames are constructed to annul the r ~~l”‘~ and coordinates are chosen to 
annul the (CU, &)-symmetric part of r,‘, so that rep@ = - 1~7’,‘, , thetll 

t,he last form being a curl. If all the normalization conditions are dropped, out 
has also 

The role of the f”‘lV in the case of the tangent bundles suggests that they bc 
tied into the axiomatic structure. For example, the condition t.hat rEr,lY1m be a 
universal function of the j’“‘y and the df”l’./&? homogeneous of first degree in 
the latter, is very strong: when L is the group of orthogonal transformations 
relative to some nonsingular numeric symmetric matrix (metric) v[,,~I , t,hix 
c-ondition establishes the F,“, as the usual Christoffel symbols corresponding to 
t,he gradient-basis components y,, = j”=“J’P1vq~clp~ of the metric ( 10). 

XII. CONSER\‘El~ (‘1lRRENT I)ENSI’I’IES 

vanishes, WC may try to interpret the single literal divergence of the infinitesimal 
curvature as a conserved current density, if the manifold is space-time. However, 
these quantities are not invariant. 

The following theorem suggests how to take care of the coordinate depend- 
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ewe. Namely, if the t”“‘” are coordinate-bound components of a completely 
contravariant tensor density completely antisymmetric in the superscripts, then 
at”“““’ /&I+‘ = (div t)““” are also the coordinate-bound components of a tensor 
density completely antisymmetric in the superscripts. Since a2tBvm”‘/dxYdxp = 0, 
we have div div t = 0. 

A scalar density s transforms so that s dx’ * . . dx” = s’ dx” . . . dx’“; i.e., 
s’ = I det [dx/‘dx’] 1 s, and the tensors formed by the tensor product of the scalar 
densities with the various mixed tensors are called tensor densities. The covariant 
derivative of tensor densities, when a connection is given, is usually defined so 
that f”*“‘+ and &Y”“‘/dti”, under the above conditions, differ only by a tensor 
linear in the torsion; and the two agree if the connection is taken torsionless. More 
fundamentally, the whole notion of a parallel displacement for tangent vectors 
is irrelevant to this section, because the literal divergences may be directly 
verified to be tensors; only the cc,) ( 8) P are involved in the covariant derivatives 
in this section. 

We go to a metric so as to be able to raise indices, R~m)(P’P” = gp*g”pR((I)(B)TJp . 
Then 1 det g.. 11”, formed from the determinant of the components of the co- 
variant metric tensor, is a convenient scalar density, and 

r(c) (‘)‘” = 1 det g.. 11’2Rc,,(B)FV 

are the components of a tensor density. If 

G, 
( OJc 

= ar(,)(“)‘Y/ax”, (14) 

then i(,, (‘)’ is also a tensor density, satisfying the literal equation of continuity, 

ai(,p/ax = 0, (15) 

if the basic frames are kept fixed, and only the coordinate-bound tangent-space 
indices are studied. Since i(,, (‘)’ is not frame-invariant, I call it a current pseudo- 
density, in analogy to the pseudotensor of energy and momentum of Einstein, 
and in conformity with the language of Yang and Mills. 

i(a) 
(P)P = il’E’Ic,,‘@’ 

separates the algebraically independent components, and 

aP/ati = 0. 

If we define the current density by 

.i(d (fl)@ = jQI(,,‘“’ = ,r(a)(B’@Y,v , (16) 

then djC,,(‘)‘/axP # 0 in general; even jCa)(‘)*,,, # 0, in general, although if the 
latter equation held, it would not be a satisfactory conservation law. 

By writing out the covariant derivatives, one sees how much the current differs 
from the pseudocurrent : 
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where the cIJK are given by (8). 
We therefore have 

The integral over a -l-volume of aj”/ax’ may therefore be transformed, not only 
to a Z-boundary int,egral of jr’, but also to a Sboundary integral of 

(-r,,KI.~‘pycK, z l< . IP 

If there are two times when the 3-spatial volume integrals of k” vanish or coincide 
and a spatial 2-surface “at infinity” over which the time-integrated flux of k”‘ 
vanishes, then although aj”‘/ax’ doesn’t necessarily vanish within the bounded 
-l-volume, its integral does, and we obtain direct conservation of the jr“ current 
density, for these circumstances. If situations where 1~‘~ vanishes sufficiently at 
spatial infinity are viewed as more general than situations where also matter is 
sufficiently smeared out or dissected so that the Z-volume 1~” integrals at fixed 
times vanish or coincide, the following argument may be employed. Vanishing 
of the time integral of the Z-surface integral of k” would render the similar integral 
of i” equal to that of j”‘. When we have this vanishing at spatial infinity, the 
invariant jr” surface integrals therefore measure geometrically meaningful fluxes 
which are conserved together with the R-volume integrated charge pseudodensity 
given by i@. This gives the Z-l-volume integrated pseudocurrent density the 
meaning of a conserved geometrically meaningful quantity, although the density 
itself is highly frame-dependent. The vanishing of c’.,~~~~‘“c~~ at spatial infinity 
may occur independently of choice of frames if the infinitesimal curvature 
vanishes there, or through choice of sufficiently parallel frames over the surface 
to make the cKv zero or small. 

It may be objected that the physical fluxes through a bounding 2-surface in 
&pace are borne by the very same mysterious particles which lend doubt to the 
possibility of the vanishing of c’,,~~~‘“c~, throughout a Svolume, even at special 
t,imes, and therefore that the conservation-law interpretation is probably empty. 
There are two answers to this objection. First, the objection does not apply to 
time intervals in which no particle crosses the surface, and this may be a long time 
for a surface sufEciently distant from matter. Second, for a scattering experiment 
in which we introduce fluxes of separated particles at spatial infinity, each particle 
may be surrounded by a large sphere, and the spatial 2-surface may be replaced 
by a spacelike 2-surface composed of the disconnected surfaces of these moving 
spheres, together with another surface surrounding the interaction region, the 
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particulate spheres being shed as the interaction region is entered, and donned 
as the interaction region is left. This argument should however be broken by 
any good theory of broken symmetries (19)) because the necessity for the sym- 
metries to appear broken comes not only from the fact of rest masses and their 
inequality, but also from violation of current conservation laws. The argument is 
also broken if the interior zones of particles are connected to points which may 
lie outside the apparent macroscopic bounding surfaces; for further remarks on 
the possibility of conservation laws under these circumstances see Section XVII. 

In the case of commutative groups, of course, the cIJK vanish, z? = ,j”, and 
there is no complication. 

j’“,, can be calculated as follows: 

The two terms in the middle may be seen to cancel if the (q v)-antisymmetry 
of the first is employed to ill, K antisymmetrize, and if the Jacobi identity 

is then invoked. Then jrP,,, = dj”,‘dx:’ + c’.,~~“‘c~~ immediately gives 

The possibility of other currents, conserved in the above sense, arises whenevel 
an antisymmetric tangent-space tensor is available. One such is the dual of the 
curvature tensor, 

d 
I’(,1 (,%tlP”’ _ +,‘uoP...R (6) 

(OL) w 9 (19) 

where the dots signify extra indices, in the event that the manifold has more 
than 4 dimensions. So metric is needed. diCa)(B)o”’ = ddt-C(2)(8)clP”‘/&rPis “literally 
conserved” in the sense that ddic,,(P)m.‘./&r” = 0, the interpretation in terms of 
conservation applying in a normal way only to the case of four-dimensional 
space-time. di is related to djCor)(slO”’ = ‘l/-(,)(B)mp”‘,p in the same way that i is 
related to j, but ‘3 = 0 is a form of the Bianchi identities, Section IX, E. There- 
fore, when di = “j on a %boundary, the conserved quantity is identically zero; 
where di = “j at spatial infinity, the net change of the conserved 3-space integral 
of di is zero. In the same sense, then, that one obtains conserved charges, the 
dual charges vanish, and their conservation is empty. “Dual charge” will how- 
ever be employed nontrivially in a modified sense, in the sequel. 

In the case of commutative groups, the vanishing of the dual current density 
is unambiguous; for the typical example of electromagnetic theory, it is the 
vanishing of the magnetic pole current density. 
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The triviality of the dual currents seems to be coextensive with the conserva- 
tion of the currents, in the shallow sense that, in a situation where it’ is hard to 
argue for one, it is likewise hard to argue for the other. This may indicate that) 
when the conservation of some currents is broken, hut survives in an approxi- 
mate form, the corresponding dual curren@ even in the present sensr, may 
vanish only to the same approximation. 

It the torsion does not vanish, and if indices may be raised and lowered and 
plain tensors converted to tensor densities, there may be more currents to COW 
sider. Thus, there is a vector T,,‘, = T, , T’ = g”“T, , t”,” = gpugypg~i7’07p ldct’ g.. i”“, 
and f”” = t”,“T”. The frame-dependent, I’,~~” may conceivably be impressed ill 
this way. One could consider an ad hoc torsion, superimposed 11~011 Riemanniall 
grom&y, or t,orsioii arising from a i~ousymnictric gPV (%1, 17). 

THERE PHYSICAL PHENOMENA C’ORI~EI.ATP;I) WITH THIS 
NONIi\;FINI1’P:SIMAI, STRlTCTl’RK? 

A connected simply connected IAir group is determined by its infinitesimal 
algebra. hIore generally, the component of identity of an arbitrary Lie group may 
he obtained from that connected simply connected Lie group which is generated 
hy its infinitesimal algehra, by mutually identifying the clcmcntJs of a disc&c> 
closed normal suhgroup. The conncct)ed simply connected group aud this iden- 
tification or factorization are the universal covering group of the component of 
t,he identit,y, and the covering map. Each element of a discrete normal sub- 
group commutes with the whole identity component, because it’ commutes with 
infinit,csimal element,s; the discrete normal subgroup which is the kernel of this 
construction is therefore commutative. It is also isomorphic to the “fmldametltal 
group ” of homotopy equivalence classes of loops in the final, factor group; the 
fundamental group is therefore commutative. ‘l’lic isomorphism rclitti!lg th 
discrete normal suhgroup and the fundamental group after factJorization is 
easily visualized if we imagine the simply connected group with the points of 
t,he discrete subgroup markrd, and widen the class of loops through the identity 
to encompass curves drawn from one clement of t,he discret,e subgroup to another. 

The entire Lie group consists in general of a number of components, each olif’ 

a manifold isomorphic to the component of the identity, which is a normal 
subgroup. If we mutually identify the elements of the componelltJ of the identit,y, 
t,hen we obtain another discrete group, which it seems reasonable t,o call the 
component, group. Since the direct product of the compoucntS of t!hc idclltit8> 
with the component group is a Lie group with the same component of identity 
and component, group as the given group, alld since it, is easy to give exam- 
ples of Lie groups which are not isomorphic to the direct product, so gellcrated, 
the relation of the other components to that of t,he identity is not adequately 
represented hy t,hc component group, but, as I know no general rharac~t.erizatioil 
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of the interrelationship between the components, I will emphasize the compo- 
nent group in the sequel. 

By forming the direct product of a connected Lie group with a group, each 
point of which constitutes an open set, any such group may be impressed as 
component group in conjunction with an arbitrary component of identity, but 
this construction is too trivial to be of interest. In fact, each matrix in L is 
equivalent to a pair of matrices, one belonging to the component of identity 
L, , and the second belonging to a discrete group, LZ . The connected L-bundle 
is therefore equivalent to a connected L1-bundle and a comiected Lz-bundle, 
over a common manifold. Furthermore, since Lz is discrete, there are no infin- 
tesimal elements, and therefore no infinitesimal components of connection, so 
so that the Le-connection along curves degenerates into the formation of products 
of seaming matrices, and the connected Lz-bundle is really only a plain L2-bundle. 
Therefore it is only if it is impossible to find an element in each component which 
commutes with the whole identity component-I will then say that L is “locked” 
-that the component structure becomes of real interest. 

In summary, although a Lie group is given adequately in the immediate neigh- 
borhood of the identity by its infinitesimal algebra, its global structure is not 
thereby determined: a discrete normal subgroup of the determined, connected, 
simply connected Lie group with the given infinitesimal structure is needed to 
specify the structure of the component of the identity, another discrete group is 
needed to specify the structure of components, and yet more information is 
needed to measure locking. 

The infinitesimal curvature and the current densities derived from infinitesimal 
quantities are all elements of Lie algebras. If all quantities of physical interest 
are already included in the curvature and current densities, then physical in- 
terest in the global structure of the symmetry group would be divorced from 
questions concerning the parallel displacement. Thus an interesting question 
is raised: Is the entire Lie group only artificially involved in the discussion of 
the physical properties related to admissible connections, and should not the proper 
object cited in a physical discussion be only the group’s infinitesimal algebra, 
or are there really physical features related to admissible comicctions involving 
the two discrete groups defined by a Lie group? 

In the absence of a Lagrangian and in the present context, I do not know how 
to obtain laws which sound as if they might be physical, unless I aim at con- 
servation laws. I therefore seek examples of conservation laws stated in terms 
of the two discrete groups only. It is not likely that the examples I give are ex- 
haustive. 

XIV. GI,OBAI, CONSERVATION LAWS 

On the physical side of the picture, I will consider an approach characteristic 
of phenomenological particle physics: a large region in ordinary space-time with 
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the usual simple topological properties assigned to empty space-time in physics, 
surrounding a small, mysterious region containing matter, and therefore of 
dubious topological character. The mysterious zone, perhaps together with some 
ordinary, vacuous space, is separated from the large, ordinary zone by the sur- 
face of a sphere, and this for a period of time. It is therefore suggested that, at 
auy one time, or on any cut from the outside, ordinary region with a spacelike 
hyperaurface, the two-dimensional spherical boundary or “bag” which sequesters 
t,he mysterious region be the object of study. 

Auy discrete mathematical object associated with a bag will be constant as the 
bag is displaced continuously with time, in such a way as to keep the mysterious 
matter illside, and therefore the discrete mathematical object will define a con- 
scrvrd property. By continuously deforming the bag in space in such a way as 
t,o keep the same myst’erious matter inside it, the discrete object is not altered, 
so that the conserved property is really a characteristic of the matter, not of the 
bag. 

When two zones of matter intermingle, bags which sequester each separately 
become impossible. However, if before two zones of matter intermingle, both are 
surrounded by one large bag, the quantity appropriate to the two zones of matter 
together may be obtained, and seen to be conserved through the intermingling. 
In order to obtain the law for “adding” the conserved quantity, the way to 
obtain the quantity appropriate to the large bag from the quantities borne by 
the two small bags prior to the iuterminingling must be ascertained. 

This general scheme will be applied to obtain conservation laws related to the 
nonsimplc-connectedness of the component of identity as represented by the 
fundamental group, but I have found no way to apply it in the discussion of 
conservation laws related to the structure of components, which will therefore 
hr run on a more ad hoc basis. 

011 the mathematical side of the picture, one must consider how the lack of 
simple-connectedness and the lack of connectedness of the group of matrices 
L cau affect the structure of connected L-bundles. The connection directly 
associated group elements to paths, but, as we have seen, in a highly frame- 
dependent way: I recall again that the contlection may be rendered by the unit 
matrix for any nonclosed path which does not cross itself, and note further that 
the matrix effecting the connection from a fixed starting point to a continuously 
moving endpoint which proceeds along a path depends discontinuously on that 
moving endpoint, owing to the jumps introduced by seaming matrices when the 
moving point goes from one patch into another, and this even if the path is a 
loop. The matrix effecting the connection around a whole closed loop, however, 
depends only on the base point and the choice of basic frame at that point, and 
obviously varies continuously as the loop is deformed continuously, and is 
therefore a fit object for our attention. We have already seen that these “curva- 
ture” matrices for a common base point and frame, arbitrarily choseu, det#ermine 
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the connected bundle up to isomorphism, so that an exhaustive study of these 
matrices would characterize the connected L-bundle completely. Although no 
claim is made here to such exhaustive study, this remark is adduced to further 
motivate the subsequent confinement of attention to the curvature matrices 
assigned to loops. 

For each loop then, there is a group element, i.e., a matrix in L. If one loop and 
base frame is deformed continuously to another, its group element proceeds con- 
tinuously to that of the other; the elements in the component group corresponding 
to homotopic loops coincide. Single loops, as representative of homotopy classes 
in the manifold, are therefore already related to the component structure of the 
group, because even though they correspond to single elements of the group, 
a single element determines the component in which it lies. 

In order to explore the nonsimple-connectedness of the component of the 
identity of the group, however, we need loops in the component of identity of 
the group, and since a group element comes from a loop in the manifold, we need 
a loop of loops in the manifold. This immediately suggests a sectioned torus, but 
the physical picture motivates us to obtain a loop of loops rather from the surface 
of a sphere. 

XV. COMPONENT OF THE IllENTITY: l)IJAI, C:HAR(:E 

To obtain a loop of loops from the surface of a sphere, or a “bag,” where all 
the loops share a common base point, the following method is suggested: Use the 
circles marked on the family of planes passing through a tangent through the 
base point. At first sight, it seems that two orientations must also hc given: a 
sense of description for any one of these circles, and an ordering of the loops thus 
obtained by, e.g., specifying for any two loops which is 1.0 be considered late1 
in the loop of loops. However, owing to the simple physical interpretation of the 
bag, we may consider the outer zone of extended, ordinary space to be obviously 
known and distinguishable from the inner zone, so that we may regard the ex- 
pression “outer normal” as having unambiguous meaning. We may also adopt a 
single right-hand rule for the whole of a large zone of ordinary space, exterior to 
several small bags, and therefore we may also use a right-hand rule. Then by 
reyuiring the beginning infinitesimal loops to be right-handed with respect to 
the outer normal, so that the concluding infinitesimal loops are left-handed with 
respect to the outer normal, the ordering of the loops is determined by the sense 
of description of any one of them. Now, suppose such a figure of sensed circles is 
rigidly rotated on a sphere by rotating the tangent line, leaving the base point 
fixed. Icor a rotation through a straight angle, the figure obtained coincides with 
that obtained by the alternative method of reversing the sense of all the loops 
or, eyuivalently, of any one of them. A quantity so associated to the figure of 
loops that it must be constant under a continuous deformation of the figure is 
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Qterefore indifferetlt to the sense of a,11 or any of the loops, and it is also evidently 
insensitive to thrx choice of a tangetlt, through the base point, since that mav be 
cotltinuottsly rotated. 

The cluatltity of interest, is, of COWYP, the homotopy class of the loop in the 
group consisting of the displacement 01’ curvature matrices generated by the 
loop of loops : The loop in the group will in general br cotltjitlttously deformed and 
tlotltrivially, katts? it has infinitesimal degrees of freedom, as the loop of loops 
is cotttitluously deformed, and will therefore depend on the details of the con- 
stturt,iotl of t,hr loop of loops, httt t,hc homotopy class of this loop in the group 
iY+ tlte1~fotx itlvariatlt.. The homotnpy c1as-j in the group associated to the surface 
of a splw~~r by the cotlstluctiotl of a figttre of loops therefore depends only 011 the 
meaning of the right-hand oltter normal rule, and on t,he choice of frame at t,hc 
has? point. It may depend on position of the base point and on choice of frame 
only insofar as the possible new frame may not be obtainable from the original 
one by a continuous procex This source of ambigttity is therefore impossible 
if t#he group has only one component. But even in the general case, since it is 
impossible to obtain a curvat8ttre matrix outside of the component of identity 
through a displacement about a loop which is homotopic to a point, and since 
each loop of the figure is in fact homotopic to a point, the specification of a 
connected component within t,hr family of all frames at a base point,---whicll I 
call a generalized orietitatioti (see twst~ srction~is transferable tmiqttely tn all 
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points on the sphere, and it is only this aspect of the choice of base point and 
base frame which may affect the final homotopy class assigned to the sphere. 

What more can be said generally about how the homotopy-class quantity may 
depend on choice of frame at the base point? We have already noted that the 
homotopy-class quantity may depend only on the generalized orientation of the 
frame. A change of generalized orientation of frame will conjugate all curvature 
matrices, and will take a loop of such matrices in the group L into a group- 
theoretically conjugate loop. The homotopy relationships between conjugate 
loops must be the same as those between the original loops, since conjugation of 
all matrices in L is a Lie-group isomorphism, but the conjugate loops may belong 
to homotopy classes distinct from the original ones: a change of orientation may 
induce a nontrivial automorphism in the fundamental group. In the example 
where L is the circle, the fundamental group is that of the integers, with only 
one possible nontrivial automorphism: an integer is replaced by its negative. 
Since these integers will signify a dual charge, this is to say that it is possible for 
the sign of dual charge to depend on a generalized orientation convention to be 
imposed from the large region of ordinary space, on all the little bags surrounding 
clumps of matter, simultaneously. In the example where L is the three-dimen- 
sional group of rotations in integral spin representation, the fundamental group 
has only two elements, and no nontrivial automorphism. 

When the homotopy classes of two bags are to be added, they are to 
be based on generalized orientations introduced at once on both bags 
from the simply connected surrounding zone of ordinary space. From the 
general discussion of the preceding section, it follows that we have obtained 
a conserved quantity associated with the homotopy classes in the group’s 
identity component (or any one component). These classes have a group law of 
multiplication: the product of two classes is the class of the loop in the group 
formed by successively describing loops in the two classes, so that the conserved 
quantity is itself an element of a group. There remains the question of ascertaining 
the law of combination or addition which gives the conserved quantity to be 
assigned to two bags together from those which belong to the separate bags. 
It is hard to see how this law could be anything other than the group law of 
combination in the fundamental group of homotopy classes, and this is what 
in fact it is. 

Figure 5 shows how we combine the quantities contained by two bags: a 
satisfactory figure on an enveloping bag is evolved continuously from the con- 
catenation of the two loops of loops belonging to the originally separate small 
bags. Since this induces the group law of combination in the fundamental group 
of homotopy classes, the law of combination is indeed the group law of the funda- 
mental group. Since this law of combination is commutative, the word “addition” 
is justified in the usual sense that the term is taken to imply commutativity. 
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In the construction shown, the small bag on the left comes first. A similar 
construction made with the small bag on the right coming first leads to an equiva- 
lent figure on the large bag. Therefore, we see again that the law of combination 
must be commutative. 

I will call this conserved quantity “dual charge,” for the following reason. 
Since the final point loop is regarded as the boundary of the whole bag punctured 
at the hinge point of the construction, the displacement about that final point 
loop-albeit the identity-may be regarded as a surface integral of the curvature 
over the entire bag, in the sense of the integral defined in Section IX, F. If such 
a spatial bag were a boundary of a spatial volume, then such a surface integral 
could be written as the volume integral of the time component of the divergence 
of the dual infinitesimal curvature; i.e., the dual charge. If such a bag is actually 
a boundary, the homotopy class of the construction is the identity; the dual 
charge is zero. If, however, we imagine a small bag in physical space, but admit 
the possibility of “wormholes” (90, 21), then in a crude, macroscopic sense the 
bag is a boundary, but microscopically it is not. Therefore, the homotopy-class 
quantity obtained by examining only the surface of the bag is confused, on the 
macroscopic level, with what appears to be the total dual charge contained inside 
the bag. This generalizes the quantization of magnetic charge found by Dirac 
(22). 

The yuautization, i.e., discreteness, of the dual charge is given directly by that 
of the fundamental group of group-loop homotopy classes. In the usual way of 
describing electromagnetic theory, however, the scale factor between the vector 
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potential and displacement becomes involved in this yuantization law, HO that the 
object quantized by this argument is the product of the elementary electric 
and magnetic charges. From this, one then deduces the separate quantization of 
both types of charge. It is interesting to speculate that some dynamical 
theories for other groups may involve:lsimilar extensions and interpretations 
of what seems in this abstract presentation to be only quantization of dual 
charge. 

If one ignores complex fields and the usual interpretation of charge, and uscs 
the real line rather than the circle of phase factors as the one-dimensional sym- 
metry group which gives rise to electromagnetism, e.g., by going back to the 
original gauge invariance of Weyl (ll), then the remarks about magnetic charges 
do not actually apply to electromagnetism, the fundamental group then being 
trivial. This is one unpalatable way to account for the lack of known magnetic 
monopoles. Another is to ignore possibilities of topological complication of or- 
dinary space-time. There is very likely no real problem, however, as it is likely 
that understanding of their theoretical properties might explain why magnetic 
monopoles are unlikely to appear in particle detectors. 

If one confines oneself to simple Lie groups, after the line and its nonsimply- 
connected image, the circle, with its fundamental group isomorphic to the 
additive group of the integers, there comes the three-dimensional group of 
rotations. The simply-connected representative is given by any half-integral spin 
representation. Well-known nonsimply-connected representations are afforded by 
the integral spin representations. For these, however, there are only two homo- 
topy classes: all loops not homotopic to a point are homotopic to each other, so 
that the group of dual charges is here the two-element or “yes, no” group. 
Thus, the isotopic dual charge associated with a Yang-Mills field associated with 
integral isotopic spin has the option of behaving exactly like a generalized parity 
-by which I mean any multiplicative quantum number with eigenvalues f 1. 

If we use the general method of producing the nonsimply-connected rotation 
groups from the spin $5 faithful representation of the simply-connected group 
by factorization of that matrix group by a discrete central subgroup, it becomes 
clear that there is no other possible fundamental group. In fact, the matrices 
are 2 by 2 unitary matrices of determinant I. An arbitrary complex matrix com- 
muting with all these-an irreducible representatiollPis a multiple by a com- 
plex number X of the identity, by Schur’s lemma. To belong to the group, it 
must have determinant 1, which already gives X2 = 1; X = f 1: The entire cen- 
ter of the group has only two elements, wheuce the fundamental group of any 
rotation group can have no more. 

It is likely that there are three-dimensional rotation groups whose dual 
charges may be of greater interest than that associated with isotopic spin; the 
rotations in ordinary space, for example. The fact that a dichotomic, yes-no 
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quantity develops in a mathematically natural way may be of interest in re- 
lation to the problem of understanding those dichotomic quantities which are 
usually introduced a priori. The wildest speculation in this direction would be 
to hope for an understanding of the Pauli exclusion principle on other grounds 
than anticommutation relations; I mean no more than to emphasize that the 
occupation number of a mode is given by “yes, no” rather than by an integer. 
Since “yes” or “no” is assigned to a bag which may be very small, one may 
imagine a coarse-grained simply-connected space cut up in meshes of various 
sizes, with mutually consistent distributions of “yes” and “no” assigned to each 
mesh, so that the production of a field with different wavelength modes but 
satisfying an exclusion principle is not hard to imagine. If the rotation group is 
that of ordinary space, it should be possible to see why a phenomenological 
exclusion-principle field introduced in this way should have half-integral spin. 
The fact that it must be built on topological flaws in the space out of the ro- 
tation-relevant part of the Christoffel-symbol field applicable to an integral-spin 
representation lends a pleasant air of weirdness to this project. 

Although the source of a dichotomic quantity is different, a similar suggestion 
has been made by J. A. Wheeler (24). 

Anticommutation relations appear more mysterious than commutation re- 
lations because if we had only the latter, we could look upon the algebraic laws 
of quantum field theory as that major part of a definition of a group of (unitary) 
transformations afforded by the commutators of its infinitesimal elements, the 
important information about the latter being presumably these commutation 
relations, in analogy to the known theory of Lie groups and Lie algebras. There- 
fore, we would have an over-all geometric view of the algebraic laws of quantum 
field theory, the hope of which is greatly damaged by the fact of anticommutation 
relations. 

The different possible laws of addition for dual charge are severely limited by 
a theorem on commutative groups: A commutative group generated by a finite 
set of its elements is isomorphic to a direct sum of a finite number of groups 
each isomorphic to the group of integers, and of a finite commutative group. 
The finite commutative group may be represented as a direct sum of a finite set, 
of the groups Vj , integers modulo 7j , and this may be so arranged that each 
71.tl is divisible by 7i (26). The theorem applies because the fundamental group 
of a Lie group is finitely generated. The following argument for this was com- 
municated to be by Dr. I,. Greenberg: A connected Lie group is homeomorphic 
to the direct product’ of a compact manifold and a Euclidean space (N), whence 
the fundamental group is that of the compact manifold, and that that is finitely 
geuerated follows from the introduction of a finite simplicial network ( ~7). 

There are discrete conserved quantities besides dual charge, but if one limits 
discussion to the assignment of elements in the fundamental group to bags by 
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devices in which a bag is made to produce a loop of loops, one will not find them : 
I call the abstract loop of loops a sectioned torus, and regard the specific intro- 
duction of a loop of loops on the sphere as a continuous mapping of the sectioned 
torus into the sphere (surface). Deform a loop on the sphere to a point, and 
deform the neighboring loops in the loop of loops so as to keep the mapping of 
the torus continuous. Since one loop on the torus now maps to a point, that loop 
may itself be squashed to a point, converting the abstract sectioned torus to a 
sectioned sphere. Two figures introduced by mapping the abstract sphere, with 
sections marked on it, into the spatial sphere, will yield equal elements in the 
fundamental group if one can be continuously deformed into the ot,her. Therefore, 
the element in the fundamental group depends only on the homotopy class of 
the mapping of one sphere into another. These classes form the second homotopy 
group of the sphere, which is isomorphic to the group of integers, its generator 
being represented by the particular construction given here. The powers of this 
generator correspond to the possible reversal of the right-hand rule, counting 
the dual charge more than once, or perhaps not at all, and are therefore not 
interesting. 

I now sketch a wormhole construction of a bundle and connection which 
realizes an arbitrary dual charge-were the bag homotopie to a point, the loop 
in the group induced by a figure of loops on the bag would also be homotopic to 
a point, and the dual charge, zero, whence some kind of wormhole is essential. 

Excise a sphere in each of two 3-spaces, and paste the spaces together at these 
spherical cuts. Split the spheres concentric with the seam sphere into hemispheres, 
by one plane, and make these hemispheres overlap slightly. Mark a radius in 
the splitting plane, which penetrates each sphere in one point. Let the seaming 
matrix at that point be the identity, and execute the desired loop in the matrix 
group as the point runs around the circle marked by the splitting plane. The 
infinitesimal components of connection may be quite arbitrary; e.g., they may 
vanish: Dual charge is a phenomenon to be reckoned with even in L-bundles 
without connections. 

The construction is easily modified to yield a pair of opposite dual charges by 
excising both spheres from the same 3-space. 

It should be noted that the conservation of ordinary charge, which depended 
on the transformation of a volume to a surface integral on a remote surface, has 
a clear meaning as a conservation law only if all the wormholes which begin in 
the gross “inside” of the surface also end in it, so that in fine detail, the surface 
really does bound a volume. The formal transformation to a surface integral 
otherwise involves very many surfaces close to or grossly “inside” matter, if 
one admits topological complications. If one wishes to handle electric charge as 
ordinary, not dual, charge, one must either regard that as coming from charge 
density, or from electric flux through wormholes (20). If the latter, an isolated 
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electron must join a distant positive charge by a wormhole, and the discussion 
of the conservation of ordinary charge based on integrals of densities would not 
apply in electromagnetism. 

The discussion of charge from a generalized geometrodynamic viewpoint, in 
which current densities are put to zero, could perhaps isolate the charge due to 
the t’rapping of flux by topological complications. If densities are not put to 
zero, one could not approach the ordinary charge as a topological invariant of a 
bag, inasmuch as continuous distortion of the bag would continuously alter the 
content of charge, and make the contribution due to trapped flux inherently 
undefinable. 

XVI. COMPOKIGW (;ROIU’: C;EiKERALI%E:I) ORIENTATION 

It has already been noted in Section XIV that the homomorphism of loops to 
the matrices giving the effect of displacement around them, called curvature, 
induces a homomorphism of the group of homotopy classes of loops in the 
manifold into the component group, “discrete curvature.” Confinement of the 
loops to a simply connected patch leads only to the identity, so that the discrete 
curvature mapping explores the L-bundle, not the details of the connection. 
If L is locked, the comiection may however be materially conditioned by the 
discrete curvature. Physical interpretation of infinitesimals associated with the 
connection may therefore invest discrete-curvature properties with physical 
meaning, and especially conserved quantities related to the discrete curvature 
should interact with other physical quantities in characteristic ways. 

If the matrix group L has several components, then that is already reflected 
in the family of frames at one point of the manifold of an L-bundle: The family 
of frames may be obtained from any one frame by applying L, and the topology 
of L obviously induces a topology in this family of frames, in which each com- 
ponent is obtained from a component of L. 

These components in the family of frames at a point may be called generalized 
orientations, as they generalize the concept of orientation in Kiemannian ge- 
ometry. The vector spaces there are the tangent spaces of the basic m-dimensional 
manifold, L is the group of ‘rn by m orthogonal real matrices, and the frames are 
those bases orthonormal in the metric. The matrices L fall into two components, 
characterized by determinants 1, - 1, and so the frames at any point fall into 
two components. If two frames belong to the same component, they are said to 
share the same orientation; otherwise, to have opposite orientations. If the dis- 
crete curvature is trivial, as it is when one limits ones loops to lie within a simply 
connected region, the orientations may be propagated consistently from any 
point, and one speaks of orientability of a portion of the space or of all of it. 
:If the discrete curvature is nontrivial, the space being in particular not simply 
connected, the space is said to he nonorientablc. 



274 LUBKIN 

In the case of a generalized orientation, there may be levels of orientability 
intermediate between complete orientability and nonorientability. To clarify 
the range of possibilities, it will be best to make the definitions a little more 
explicit, by emphasizing the requirement that the loops in the manifold share a 
common base point with a common base orientation. (If one defines the curvature 
by transporting the frame around the loop, one winds up with a final frame 
which will not generally coincide with the initial frame of the next loop and 
therefore the definition of a product of loops by successive description is 
threatened. This difficulty has been circumvented by referring variously trans- 
ported vectors to one base frame at the base point.) The discrete-curvature 
image of the loops in the component group will constitute a subgroup, invariant 
to continuous change of the universal base point if the initial orientation is 
propagated continuously, and which will suffer conjugation by an arbitrary 
component-group element if the initial orientation is arbitrarily changed. This 
class of conjugate subgroups will be called the L-bundle’s deorientizer. The 
different kinds of orientability are given by the distinct conjugate classes of 
subgroups of the component group, the number of orientations available in any 
one of these kinds of orientability is given by the index in the component group 
of any one of the conjugate subgroups in the deorientizer, and so, in particular, 
divides the order of the component group. The language is obviously simplified 
for commutative component groups. 

The limitation of possible deorientizers to classes of conjugate subgroups of 
the component group is supported from below by a complete set of examples of 
such generalized deorientizers built upon structures in a 3-space manifold. Sup- 
pose the subgroup which we wish to set up as representative of a deorientizer 
has g generators. Excise g nonintersecting tori which share a common equatorial 
plane from Euclidean 3-space, and introduce g new Euclidean S-spaces, each 
with one excised torus. Cut each space in half along the equatorial plane, so that 
the g + 1 spaces produce 2g + 2 pieces, each of which is homeomorphic to 
Euclidean 3-space, and therefore a possible simple patch. Seam the g toroidal 
cuts in the one 3-space to the toroidal cuts in the g other spaces, producing 
what I will call g toroidal wormholes. Seam the planar cuts in each of the g + 1 
spaces back to what was joined before the cuts were introduced. For L-matrices 
in the seamings, use the unit matrix, except for the circular planar cuts across 
the doughnut holes of the g toroidal wormholes, where in each pair of circu- 
lar cuts associated with a toroidal wormhole an L-matrix corresponding to a 
component group generator is employed. Imagine all the pieces extended 
slightly into the pieces to which they are seamed, so that we may speak of the 
seam overlap regions. Then there are never more than three overlapping 
patches on a point, and that only for points near the edge of the planar cir- 
cular cuts. The three-patch seaming axiom requires that the L-matrices used in 
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a pair of circular cuts associated with the same toroidal wormhole, in the same 
sense, coincide; the two-patch axiom requires only that the inverse matrix be 
employed in threading a toroidal wormhole in the reversed sense. 

If, instead of toroidal wormholes, we built simple crosscaps by excising g 
spheres in one F&space, identifying diametrically opposite points, and then 
employing g matrices L1 , . . . , I,, on the g crosscaps, the construction would 
bc limited by the equations Lx’ = 1 coming from the 2-patch seaming axiom, 
although this could also be traced to the Zpatch seaming axiom with some 
manipulation. This “fault” is, of course, intrinsic to crosscaps, in that the curve 
homotopy group associated with any one crosscap is a 2-element group, and not 
a free cyclic group. 

It has already been remarked in Section XV that the specification of the dual 
charge assigned to a bag surrounded by simply-connected ordinary space on 
the outside depends not only on a right-hand rule, but possibly also on a choice 
of generalized orientation in this simply connected ordinary region. It should also 
be noted that this possibility exists for the case of the curvature and t,he current 
densities. In fact, if a quantity q is given by an element q’EIC,j(B1 in the infini- 
tesimal algebra, then it will be transformed to the conjugate q’FB,F-’ = q”Er , 
where F is the matrix which takes the components of a vector on t)he old frame 
to those on the newly oriented frame, and this represents some compcinent dis- 
tinct from that of the identity. The quantities q’ will be unchanged only if 
FB,F-’ = E, , for all I. If for each possible change of orientation such an 8’ 
can be found, then the group generated by such F’s commutes with the component 
of identity, and its direct product with the component of identity is isomorphic 
to the given group L. Therefore the locked involvement of a component group 
necessitates a material dependence of infinitesimal-algebra quantities p’, iti- 
&ding infinitesimal curvature and charge density, on choice of orientation. 

In order to develop the possibility of related conservation laws, I again COW 
sider a picture of ordinary &space with one or several matter-containing pockets 
cut out by bags. The vacuous region is simply connected, and so its deorientizer, 
defined, of course, on the basis of only those loops which lie entirely within the 
vacuous region, is trivial. If the interdiction on the crossing of any one bag 
is dropped, however, the deorientizer may no longer be trivial, and in that case 
it will specify a nontrivial property of the matter in the bag. More precisely, 
the bags must he considered to move in time so as to surround world-zones of 
separated lumps of matter, and the vacuous zone of space-time must be cut off 
from interminglings of such lumps of matter by early and late spacelike bound- 
aries, with the conservation law applicable only to the limited time interval 
between, so that the interdictions on the crossing of bags may not be subverted 
by motion in time. Such moving bags may be called timelike cylinders; anni- 
hilation would correspond to the possibility of a bent cylinder, i.e., of timelikc 
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FIG. 6. Dependence of deorientixers on a boundary which extends in time 

cylinders which meet in a latest bag out of which is ejected matter without 
deorientizing effect. 

The situation here is, however, inherently different from the study by bags of 
the fundamental group. In that case, the quantity of interest depended directly 
on the two-dimensional bag, which could be regarded as contained in one instant 
of time, as interpreted from the outer, “na’ive” region of space-time. The differ- 
ence between deorientizers with or without a cut, however, depends on a bound- 
aryless three-dimensional cut in 4-space, and this is not defined by the two- 
dimensional bag or bags which it marks on any one spacelike hypersurface drawn 
in the vacuous zone: the same bag at one instant could be completed into a 
three-dimensional cut in two different ways, such that the deorientizers intro- 
duced by removing the different 3-cuts attached to one bag are different. Thus, 
in Fig. 6a, the nontriviality of the 3-cut isolating an annihilation-bent line is 
felt if this cut is opened at the “late time” after the annihilation event, whereas 
the opening of the hollow 3-cut in Fig. 6b does not release the nontriviality of 
the annihilation line. The relation of a 2-bag in 3-space to its naive apparent 
instantaneous contents is broken, and the deorientizers associated to 3-cuts had 
perhaps better be presented as labels characteristic of possibly bent world tubes, 
than as conservation laws. 

The addition of the deorientizers of two disjoint 3-cuts, well-separated from 
the viewpoint of the ordinary, outside region, requires more information than 
the specification of the separate deorientizers. If the removal of both 3-cuts 
fails to bring in any essentially new loops because of the possible connection of 
the mysterious “insides” of the apparently unrelated 3-cuts, then for each sub- 
group in the first deorientizer there is one in the second such that the two sub- 
groups together generate the combined deorientizer, but if essentially new loops 
are opened, the combined deorientizer will be larger. In the fusion of 3-cuts, 
there is never any cancellation of separate deorientizers; there is no notion of the 
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deorientizer of a particle and that of an antiparticle being separate and cancelling, 
but at best one for a S-cut isolating a possibly folded world-path. 

XVII. THE IXTRODIJCTION OF GENERALIZED ORIENTATION BY CHARC;IS 

COSJIGATION IXTO THE ELECTROMAGNETIC CASE 

An example of a locked multicomponent group is generated by “charge COW 
jugation” and the usual gauge group of electromagnetic theory. The gauge OI 

phase transformations are, to be specific, 4 + +eis, where 4 is a complex spinless 
c-number field and 0 is a real number modulo 27r, and charge conjugation is 
complex conjugation of the field 4. 

In order to represent complex conjugation linearly, the complex numbers will 
be represented by their real and imaginary parts. Then the phase transformation 
with parameter 8, or rotation by 8, is effected by the matrix 

[ 

cos 8 - sin 6 
sin 0 cos e 1 = R ($1 , 

complex conjugation is effected by the matrix 

1 0 [ 1 O-l ’ 

and these generate reflections S(O), where the line is which the reflection is 
made is oriented at angle O/2 modulo ?r from the real axis; the s(O) like the 
R(9) are indexed by real numbers modulo 2a. The component of identity, cool- 
sisting of the rotations, is commutative; the reflections form a second component, 
so that the component group is the two-element group, commutative. The whole 
group is not, however, commutative; the multiplication table is 

R(PP(@ = We + cp), 

W@S(PP) = s(e + cp), 

wv)R(e) = S(cp - 81, 

S(,)S(e) = R(,p - 6); 

the commutator of a rotation with a reflection is 

S((p)R( -e)S(q)R(e) = R(2e); 

the commutator subgroup is the component of the identity. (The group S 
generated by the commutators with the component of identity or with its in- 
finitesimal elements of one or more representives from each component is a 
normal subgroup of the component of identity distinct from the identity alone, 
and possessed of an infinitesimal element provided that L is locked, and there- 
fore C is the whole component of identity whenever the infinitesimal algebra of 
L is simple.) 
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The discussion below will depend only on the abstract group of R( 0)‘s and 
S(e)‘s, and will therefore not be limited to the given realization of this group on 
the model of a c-number spinless field 4. 

The discussion of generalized orientation touched on two issues: first, the 
ambiguity produced in the definition of dual charge and of infinitesimal-algebra 
quantities, e.g., infinitesimal curvature and current densities, and second, the 
possibility of new structures, poorly defined in terms of deorientizers and hyper- 
bags, and both these issues are briefly elaborated for the present example. How- 
ever, since here there is no intermediate between generalized orientability and 
nonorientability, the mechanism of deorientizers is so poor that it will be dropped. 

Our first topic, then, is the matter of possible change of magnetic and 
electric charge when an S-reflection of the frames is made. It is easily seen 
that both types of charge do, in fact, reverse: Since S(C,D)R(B)S(~) = R( -e), 
the infinitesimal rotations are simply reversed, so that all infinitesimal algebra 
quantities, i&ding the curvature-i.e., fields-, and the current density, 
reverse. For the case of magnetic charge, reversal is already implied in the re- 
versal of the magnetic flux, but a direct argument is also easy: The original 
magnetic charge is given relative to a geometric figure of loops on a bag which is 
unaltered by the S-reflection of frames, but the R(0)‘s assigned to loops are 
replaced by R( -0)‘s whence the loop induced in the rotation component of the 
group, the circle, is the loop of inverses of the original loop taken in the original, 
not the reversed, order, which in this case belongs to the inverse element of the 
fundamental group, that is, to opposite dual charge. In this sense, then, the S- 
reflections, and in particular, S(O), are charge conjugations. 

I will now discuss three deorientizing structures: a crosscap and a toroidal 
wormhole, as defined in the previous section, and a toroidal crosscap. 

The general objection to use of a crosscap, in that the s-space fundamental 
group is then only a two-element group and will not support a complicated 
deorientizer, does not apply here, because each reflection S(0) actually squares 
to the identity R(0). We therefore imagine a crosscap bearing, say, an S(0) 
reflection. The S(0) reflection alone induces a reversal of electric and magnetic 
charge; more precisely, the electric and magnetic charge defined relative to 
spatial frames propagated continuously through the crosscap seam considered 
therefore as a seam of vectored patches only, indeed reverse. Since those con- 
tinuously propagated frames bear identical ordinary orientation to frames con- 

tinuous with the original frames within the simply connected region exterior to 
a large bag around the whole crosscap, the electric and magnetic charges, as 
defined with respect to one consistently oriented family of frames in the reduced 
space out of which the crosscap has been excised, are in fact reversed; if one 
charge (electric or magnetic) remains fixed, while a neighboring charge is threaded 
through the crosscap and then brought back near to the fixed charge, its charge 



relative to that of the fixed charge will be found to have reversed. Nevertheless, 
conservation of charge of both kinds is preserved, the missing charge being made 
up by a charge assigned to the crosscap itself. 

This statement is supported easily for the magnetic charge : The total magnetic 
charge deduced from a bag surrounding both t)he small magnetic charge and the 
crosscap must remaiu the same when the sign of the magnetic charge on the 
small magnetic charge has reversed, and the only nonsimply-connected region 
which may be bagged for the compensating magnetic charge is the zone of t)he 
crosscap. It is also possible to see in detail how this happens by drawing Faraday 
lines of force. Instead of attempting a freehand motion picture here, I note the 
fact that without an s‘(0) operation on the lines of force, a system of lines of 
force which enter a crosscap punches through to another system which leaves, 
so that no net flux threads a bag surrounding the crosscap, but that, if the crosscap 
is made to bear a charge conjugation operation, then such an entering system 
punches through to a second entering system, owing to reversal of the sense of 
the fields, thereby yielding net flux through a bag surrounding the crosscap. 

The same image of Faraday lines of force is obviously applicable to the electric 
charges, so that the answer when the dynamics of the infinitesimal curvature 
field is governed by Maxwell’s equations is clear. But there is no hope that the 
argument be supported by appealing to a conservation law framed in terms of 
the volume integral of a density, since the charge which is missing as a density 
is balanced by an everywhere divergenceless flux. The effective use of charge 
conjugation thus presents a mechauism for the exchange of charge between a 
mysterious density and a definite crosscap model. 

The density conservation law may, however, be employed indirectly to derive 
charge conservation, as measured by total flux. If a large bag is drawn to sur- 
round the entire event, and this bag is considered as a boundary of the void 
region exterior to it, then one concludes that the electric flux through it remains 
constant as the charge (small zone of charge density) threads through the cross- 
cap. This constant flux is originally and also finally the sum of that emerging 
from a bag containing the charge density and that containing thr crosscap 
region. 

If electric and magnetic charges run through a crosscap without a charge 
conjugation, they do not reverse sign, and the conservation arguments show 
that the crosscap region does not alter either of its charges. Boundary conditions 
appropriate to no charge conjugation also make the surface integral of curvature 
on a bag barely surrounding a crosscap zero, by the cancellation of contributions 
from elements of area immediately over crosscap-identified points. 

The situation for a toroidal wormhole is similar. When there is no charge 
conjugation across the hole of the doughnut, a magnetic or an electric charge 
which threads through it does not change sign, of course, and the field which 
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remains stuck to the wormhole is a dipole field, but when there is a charge conju- 
gation, the charge’s sign reverses, a change which is compensated by a monopole 
field on the wormhole. The field emanates both ways from a disc drawn across 
the hole of the doughnut, which is, of course, of the same artificial significance 
as a branch cut in analysis, the field being amenable to smooth continuation 
through such a disc. The picture of Faraday flux lines is most simple if the 
excised tori have very small volume, but very large doughnut holes, so that the 
flux in the space in which the charge moves finds it difficult to punch through 
into the second attached space. 

A toroidal crosscap is interesting because it renders the underlying ?&manifold 
nonorientable in the usual sense of orthogonal 3-space geometry, and thereby 
behaves differently with electric and magnetic charges. By a toroidal crosscap, 
I mean the structure formed as follows: Excise a torus from an ordinary 3-space, 
and then identify diametrically opposite points on, say, the circles of longitude; 
unlike the case of the toroidal wormhole, no second 3-space or other excised 
torus in the first 3-space is needed to heal the cut. It is easy to see that, if a 
little orthogonal triad passes through the cut, it emerges with reversed ordinary 
orientation. Then, if no S-reflection is used in defining the parallel displacement 
of phase, there is no change of sign of electric charge produced by threading the 
cut, but there is change of sign of magnetic charge, because although the definition 
of outer normal and the R(O)‘s assigned to the loops in a figure of loops remain 
unchanged when a magnetic charge-containing bag is taken through the cut, 
the right-hand rule for picking a first loop in the figure of loops is changed. The 
last possibility-that of changing the sign of electric charge but not changing 
that of magnetic charge-is achieved by a toroidal crosscap with an S-reflection 
imposed on the frames for phase. 

If R(8) is replaced by R’(O), shift by 0 in the positive sense of the real line, 
and S(0) by x’(0), reversal of the real line leaving e/a invariant, then the above 
holds, except that 0 is no longer modulo %r, and the statements about magnetic 
charge are void, because the fundamental group has only one element, so that 
the magnetic charge vanishes. 

XVIII. LAGRANGIANS 

One may explore the classical mechanics and, from the canonical group of that, 
the quantum mechanics of frame-invariant field functions of the invariant points 
on connected L-bundles, used as Lagrangians. The Lagrangian -~&f’” for 
electromagnetic theory suggests gIJR1pVrJ’Y, where a metric tensor has been 
assumed to raise the indices, and where the g IJ are numeric coefficients which 
transform like the EIE, under change of the vector-space basis in the Lie algebra. 
The cLrKcKJL , perhaps multiplied by a constant, may be used for grJ , always 
yielding symmetric gIJ and yielding nonsingular grJ for semisimple Lie algebras. 
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This is the method by which Yang and Mills obtain a Lagrangian. ql.,tPYaPRr,,yRJ~p , 
which needs no metric tensor, is the generalization of the quadratic pseudo- 
scalar invariant of the electromagnetic field. gIJj’“c.‘,, is a generalization of the 
j”A, term of electromagnetic theory. There are therefore many possible sets of 
dynamical equations to explore. 

XIX. CONCLUDING REMARKS 

It may be useful to briefly augment the begirmings which have been suggested. 
The role of representation bundle as the object underlying an L-admissible 
comlection suggests the applicability of the mathematical machinery of buridle 
theory. The discussion of tangent spaces by trying to build on the easier discus- 
sion of the bundle of frames they define, then considering the transformation 
relating the frames to the coordinate-bound bases, has only been hinted at here. 
It may not be difficult to mimic the proofs in Riematmian geometry, and thereby 
give discussions of complete systems of identities for the infinitesimal curvature. 
It is not clear what consequences can be drawn from the “peculiar integral” in 
the noncommutative cases. Locking, essential to nontriviality of the multi- 
component structure, should be characterized. The discussions of topological 
peculiarities should be related to a detailed classification of all the possibilities. 

Before a quantum theory including provision for variegated topological pe- 
culiarities of the underlying manifold (21) is at hand, there is yet some possible 
practical-i.e., quantum-mechanical-use in such considerations, in that the 
conservation laws they suggest may provide for new reasons for poorly under- 
stood quantum numbers. *Just as in geomctrodynamics, structures built on 
topological peculiarities are expected to have mass, so that the position of mass 
in totally gauge-invariant theories may be simpler than the possible masses ob- 
tained in sophisticated considerations over simply connected ordinary space- 
time. Discussions which average over large quantities of topological peculiarities 
should yield new classical theories with extra densities, analogous to the current 
and monopole current densities of the totally inhomogeneous Maxwell equations. 

The topological peculiarities presented here as associated with small zones of 
space may, of course, also be big (28): new forms of connectivity for ordinary 
space-time is tradit,ional cosmology. 

This work is an offshoot of an unsuccessful attempt to better underst,and spin 35 h?; 
imit.at,ing t.he work of Wheeler and Misner (do), with a free neutrino field replacing the free 

elect~romagnetic field. Thanks are due to Dr. Sanford Wolfe for acquainting the author with 
Prof. J. J. Sakurai’s stimulating paper on generalized gauge invariance (29). The line of 

work became the explicit, demonstration ttlat the idea of general relativity it,self was in- 
volved, an idea behind all the work in t,his field, and the declared motivation of t,he basic 
paper of j-ang and Mills (13). Thanks are due t,o I)r. A. Pais for informing the author t,hat 
R.. ITtiyama had already presented the formalism of in1 reducing Ihe general Lie algebra (14). 
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The work continued when the question, in what w.\y do Lie-group properties beyond 
those contained in the infinitesimal algebra manifest themselves, was raised by the author 

in contradiction to his own flat statement that “gauge invariance ” is a strictly infinitesimal 
subject, addressed to the High Energy Physics Group at Brown University. Thanks are 
due to Prof. I>. Feldman for his broad view of “high energy physics.” 

RECEIVED: December 7, 1962 
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